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Abstract

This paper develops an equilibrium labor market model that jointly incorporates

worker heterogeneity, firm heterogeneity, compensating differentials, search fric-

tions, and Becker–type complementarities. We show that the primitives of the

model are nonparametrically identified using matched employer–employee data.

Unobserved heterogeneity can be recovered in the first stage in a fully model

consistent way, making estimation very tractable. We apply the framework to

Swedish administrative data and find substantial heterogeneity in worker pref-

erences over firms, large non-pecuniary contributions to wage dispersion, and

meaningful but imperfect sorting. Our estimates provide a structural interpre-

tation of observed wage premia, mobility patterns, and sorting patterns in the

data.
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Introduction
Explaining wage determination and labor market flows is crucial for understanding

both the nature of dispersion and the functioning of the labor market. This under-

standing can, in turn, help to formulate policy. The sorting of workers to firms and

the consequent implications for wages has been understood even before Becker’s semi-

nal paper (Becker, 1973).1 However, empirical work on sorting and its effects took off

with the increasing availability of matched employer-employee data, which spawned a

large literature. The importance of such work lies, in part, in the need to understand

wage setting, where seemingly identical individuals receive different pay rates depend-

ing on where they work. In his influential lecture series, Mortensen (2003) identifies

four key economic forces that contribute to the noticeably large cross-sectional wage

dispersion observed in most developed economies. The first is the inherent productivity

differences between workers. The second is a Rosen (1986) compensating differentials

channel, where wages offset the varying disutility of labor among employers. The third

is the wage dispersion channel caused by market frictions, which grants some degree

of local monopsony power to firms. The fourth is the endogenous matching of work-

ers with firms in the presence of match complementarities, as in Becker (1973) and

Sattinger (1993).

Although theoretically well-defined, studying these four channels empirically presents

an immediate challenge, even with detailed matched employer-employee data: the pro-

ductivities and valuations of workers and jobs are neither directly observed nor shifted

exogenously. Workers and firms are forward-looking, and wage-setting and employ-

ment decisions reflect a combination of all channels. Quantifying the different forces

requires a coherent theory combined with a sound identification strategy.

In this paper, we make three key contributions. First, we develop a theoretical

equilibrium model of the labor market that encompasses all four channels. Second,

we prove that the model’s primitives are nonparametrically identified using matched

employer-employee data. Specifically, while we assume discrete types, we do not impose

any shape restrictions on match production or the disutility of labor. Our identifica-

tion approach demonstrates that we can use the nonlinear estimator of Bonhomme,

Lamadon, and Manresa (2019, hereafter BLM), which provides a purely statistical de-

scription of wages and transitions, to reveal the unobserved heterogeneity of workers

and firms in the first stage in a fully model-consistent manner. We then illustrate

1Early papers addressing the assignment problem include Koopmans and Beckmann (1957) and
Shapley and Shubik (1971).
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how to non-parametrically recover the primitives of our structural model from the

type-specific wages and mobility patterns estimated in the first stage. Third, the iden-

tification proof suggests an estimation strategy that we apply to analyze the sources

of wage variation in Swedish administrative records.

Our first main empirical finding is that workers do not agree on a common rank-

ing of firms. This indicates that both worker heterogeneity and differences in worker

composition between firms are important factors in explaining mobility and wage dis-

persion between and within employers. In particular, while all workers agree on which

firms pay the most, they disagree on which firms they prefer to work for. They make

systematically different job-to-job transitions based on worker type. Our second find-

ing is that non-pecuniary aspects of jobs significantly contribute to wage dispersion,

accounting for half of the within-worker wage dispersion.

Our theoretical model integrates the theory of complementarities of Becker (1973),

the presence of compensating differentials of Rosen (1986), and wage setting in a fric-

tional labor market that includes on-the-job search of Postel-Vinay and Robin (2002,

PVR). The economy consists of heterogeneous workers and firms. When a worker and

a firm are matched, the firm collects output, pays a wage to the worker, and the worker

experiences a disutility of working (or, equivalently, enjoys an amenity). Both produc-

tion and disutility are fully flexible functions of the worker and firm types, allowing

for arbitrary complementarity or substitutability between chosen partners. Firms are

risk-neutral, workers are risk-averse, and both parties are forward-looking. Meetings

between firms and workers are constrained by search frictions. Both employed and

unemployed workers search for jobs, and when they encounter a vacancy, they also

draw a mobility preference shock.

Solving the equilibrium is more challenging than what is presented in the existing

literature for two main reasons: first, workers are risk-averse, making the joint value of

a match dependent on the wage; and second, there are complementarities and on-the-

job search. However, by defining the match surplus as the highest present value that

the firm can offer to the worker, we can characterize the equilibrium concisely. We

first demonstrate that the optimal contract is a straightforward extension of matching

outside offers of Postel-Vinay and Robin (2002), even when firm types are private

information, while worker types and mobility costs are common knowledge. Second,

we demonstrate that our surplus satisfies a surprisingly simple and intuitive equation

that extends Postel-Vinay and Robin (2002). Third, we show that the equilibrium wage

can be directly expressed as a function of the surplus to the worker. These theoretical
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results are crucial when we apply our framework to the data.

The model produces a range of implications for the wages and mobility patterns of

workers. The presence of interactions in match value, through production and disu-

tility, combined with capacity constraints, leads to a Becker (1973) role for sorting in

the presence of supermodularity. This insight was first extended to random search in

Shimer and Smith (2000) and remains relevant in our context. Importantly, different

workers have different rankings across employers, which generates sorting in equilib-

rium. This sorting will be imperfect, potentially leading to allocative losses compared

to a frictionless environment. This also leads to wage differences between employers

for the same worker, as surpluses inherit some of the interactions of production. At the

same time, firm-specific amenities allow for an additional channel through which firm

wages might differ. As in Rosen (1986), firms with comparatively worse disutility will

have to compensate the worker in the form of higher wages at the margin. The impor-

tance of the non-pecuniary characteristic of jobs has been documented in several recent

papers (Sorkin, 2018; Lamadon, Mogstad, and Setzler, 2022; Lentz, Piyapromdee, and

Robin, 2023).

These features are important to keep in mind when considering the decomposition of

earnings in matched data pioneered by Abowd, Kramarz, and Margolis (1999, hereafter

AKM). The lessons from such a decomposition, as presented in Bonhomme, Holzheu,

Lamadon, Manresa, Mogstad, and Setzler (2023), indicate that differences in firm

premia account for between 5% and 15% of the cross-sectional variance in earnings,

while the sorting of high-paid workers into high-paying firms accounts for 10% to 20%.

Our paper provides a structural interpretation of these numbers by linking sorting and

wage premia to productivity, disutility, and the presence of search frictions.

A key distinction in the environment we study is that the worker and firm-effects

from an AKM estimation do not correspond to the actual worker and firm-types of the

model. A similar point has been made by Eeckhout and Kircher (2011) and Hagedorn,

Law, and Manovskii (2017). Here, we consider the log-additive decomposition as an

informative moment of the data; however, we utilize a different approach to identify

and estimate worker and firm-types.

Our identification employs a series of steps and results. First, we prove that our

framework is compatible with the assumptions of the nonlinear estimator of BLM. In

contrast to the estimation of AKM, the types from the estimation of BLM correspond

to the model types. Conditional on the estimated types, the estimated wages, mobility,

and allocations of BLM are consistent with the data generating process of the model.
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This is the first step. Next, we show that wages, allocations, and mobility estimates

can be inverted to recover the underlying structural parameters of the model. A key

property of the model is that the surplus of the worker can be expressed using wages,

inversely weighted by the probability of either a wage increase or a move out of the job,

all of which are known for each worker and firm pair from the first step. This property

holds more generally than in our particular context (as long as the wage contract is

optimal) and allows for the identification of surpluses in a broader sense. The final

step is to go from surpluses to production and disutilities. This is made possible by

the properties of the contract and by the simple expression of the surplus. We show,

for example, how the value of a vacancy can be constructed from wages extracted from

BLM estimates once the surplus is known.

Although our identification allows for an arbitrarily flexible mobility shock distribu-

tion, there is a very transparent interpretation in the case of the logistic distribution.

In this case, we can use mobility alone from the BLM estimation stage to directly

recover the match surplus (up to scale)2. Therefore, wages can be used to separate

production from disutility (amenities) given mobility patterns. This is the strategy

that we employ in estimation.

We use our model to investigate the underlying forces that lead to the observed

sorting, including the potential roles of complementarities in production and ameni-

ties. We find that heterogeneity across workers accounts for the majority of the wage

dispersion observed in the data; there is substantial positive sorting of workers across

jobs; and just under half of the within-worker variation in wages is attributable to

compensating differentials. Importantly, the share of within-worker variation due to

compensating differentials (i.e., wage variation that is not associated with variation

in the worker’s utility) markedly differs by worker type. It accounts for 12% of the

variation in wages for workers of the highest type, but more than 65% for the lowest

type. We estimate that the process of sorting workers into firms accounts for 27%

of the wage dispersion between workers and for 20% of the overall wage dispersion.

Finally, we use the model to interpret several well-documented empirical regularities

reported in Card et al. (2013) and Di Addario et al. (2023).

Related literature. Our paper is related to several recent contributions. The first

is Hagedorn, Law, and Manovskii (2017), which demonstrates the identification of

2This uses a revealed preference argument similar to Sorkin (2018), but we relax the assumption
that all workers have common preferences. Arcidiacono et al. (2023) presents a search model with
amenities and preference shocks that exploits insights from dynamic discrete choice estimation. Both
of these models are partial equilibrium, and the shocks are not priced into wages.
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the equilibrium frictional sorting model of Shimer and Smith (2000), wherein workers

search only from unemployment. In this model, a worker’s wage rank within a firm is

equivalent to a worker’s productivity rank within that firm. Transitivity across firms

allows for a complete ranking of workers based on wages. The second is Sorkin (2018),

who uses worker mobility patterns to classify the amenity values of firms according to

revealed preference, under the assumption of a common ranking of firms by all workers,

in the spirit of the wage posting model of Burdett and Mortensen (1998). Interestingly,

the identifying assumptions in Hagedorn et al. (2017) rule out the possibility of com-

pensating differentials arising from amenities, while the assumptions in Sorkin (2018)

rule out the possibility of worker-firm sorting. Unlike these two papers, we provide

identification in a class of models in the spirit of Postel-Vinay and Robin (2002) in

which the wage does not necessarily order worker types within a firm due to compen-

sating differentials from various sources, and where workers do not need to agree on

a common ranking of firms due to either production complementarities or worker-firm

specific disutility of labor or amenities. Our paper shares many characteristics with

Taber and Vejlin (2020). An important difference is that our identification proofs pro-

vide a mapping that can be directly adapted to estimate the model’s structure without

the need to repeatedly solve and simulate, thereby offering additional transparency.

Lamadon, Mogstad, and Setzler (2022) proposes a static and frictionless model

with several features that we study, including interactions in production and amenities.

They demonstrate the fundamental role of interactions in amenities for understanding

the distribution of firm size, wage premia, and sorting, while clarifying that the presence

of firm effects could be driven by compensating differentials rather than market power.

In that paper, there is a one-to-one mapping between amenities and firm size. It also

remains silent on the differential mobility patterns of low- and high wage workers. In

a dynamic context with search frictions, we address the key identification problem of

separating these channels and demonstrate the empirical importance of amenities in

understanding systematic worker flows across jobs, particularly for workers with the

lowest average pay. Additionally, in our dynamic context, we can derive the elasticities

of hires and separations with respect to firm wages, objects that are prevalent in the

empirical literature but are not defined in a static model.

Unlike the papers discussed above, we derive the optimal contract offered by risk-

neutral firms to risk-averse workers. The approach shares features with Balke and

Lamadon (2022) and provides a comprehensive microfoundation for the types of con-

tracts assumed in Postel-Vinay and Robin (2002). It extends to a much richer envi-
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ronment that includes non-wage attributes of jobs and mobility cost shocks.

In contemporaneous work, Borovickova and Shimer (2024) proposes an elegant

model that extends Shimer and Smith (2000) by adding a match-specific shock to

production. The selection induced by the match shock allows the model to success-

fully reproduce the wage and sorting patterns estimated by BLM. While their model

does successfully replicate these cross-sectional observations, it is unable to generate

job-to-job mobility accompanied by a wage cut, which is also a feature of the BLM

estimates and a well established empirical characteristic of worker transitions (Jolivet

et al., 2006; Sorkin, 2018; Morchio and Moser, 2023). This feature of the data plays

an important role in identifying the value that workers place on non-wage attributes

of jobs.

Finally, Lentz, Piyapromdee, and Robin (2023) provides a statistical model based

on BLM. They impose additional parametric restrictions on mobility to facilitate in-

terpretation and propose a slightly different iterative estimation procedure than BLM.

Their reduced-form analysis emphasizes the apparent disconnect between the wage and

mobility processes. Our theoretical model provides a coherent interpretation of this

data that is not possible with any existing equilibrium search model.

We proceed as follows. In Section 1, we present the model, which we characterize

in Section 2. We prove non-parametric identification in Section 3. In Section 4 we

discuss the data and present the estimates. We present the model decompositions of

wages and the interpretation of empirical regularities in Section 5, followed by the

conclusion. The proofs are collected in Appendix A, with additional derivations and

robustness checks included in Online Appendix B.

1 The labor market model
We consider a steady-state economy populated by heterogeneous workers and firms.

Time is discrete. Workers and firms are forward-looking, discounting the future at a

rate r, and have an infinite planning horizon.

1.1 Agents and states
There are X worker types indexed by x = 1, . . . , X. We denote by ℓx the measure of

type x workers in the population, with the total measure normalized to one. There are

Y firm types indexed by y = 1, . . . , Y . Let ny denote the measure of jobs of type y,

which may be vacant or matched to a worker, with total measure N . The measure of

unemployed workers of type x is ℓ0x, and the measure of matches of type (x, y) is ℓ1x,y,

with ℓ0x +
∑Y

y=1 ℓ
1
x,y = ℓx.
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Firms hire workers and advertise vacancies for unfilled positions. Each firm may

employ multiple workers, potentially of different types, where the total firm output is

the sum of the output for each match, and hiring and wage contract decisions are made

independently across jobs. We denote by vy the measure of job openings of type y and

by V =
∑Y

y=1 vy the total measure of vacancies, with ny = vy +
∑X

x=1 ℓ
1
x,y.

We assume that ℓx and ny are exogenous, while vy, ℓ
0
x, and ℓ1x,y are determined in

equilibrium.

1.2 Timing of events
At the beginning of each period, a worker may either be unemployed or employed. The

timing of events during the period for each employment situation is as follows:

Unemployed workers. When not working, workers enjoy the utility of home pro-

duction bx during the period. At the end of the period, each unemployed worker

contacts a job vacancy with probability λ0. This vacancy, y, is drawn from the cross

section of vacancies with a probability of vy/V . Upon meeting, the workers draw an

instantaneous, one-time utility shock ξ from the distribution G0 (which has negative

support and density g0). They will experience this shock only if they change state,

specifically if they accept the job. We assume that firms make take-it-or-leave-it offers

to unemployed workers in a manner that we will describe below.

Employed workers. A match between a worker of type x and a firm of type y

produces fx,y during the period. Workers receive a wage w that they value at a utility

flow of u(w). They incur a deterministic flow cost of cx,y from providing labor in this

job, net of any amenity value. We will use the terms disutility of labor and amenity

interchangeably. Their net flow utility from a job is u(w)− cx,y. Job costs or amenities

are predetermined and set at the foundation of the firm, either as fixed characteristics

or due to location.

At the end of the period, the match is exogenously destroyed with probability δx,y.

The job becomes vacant, and the worker becomes unemployed, remaining in that state

until the following period. The match continues with probability δx,y := 1 − δx,y, and

the worker contacts an alternative vacancy with probability λ1. This vacancy is also

drawn from the cross section of vacancies, where a vacancy of type y′ is drawn with

probability vy′/V . At the time of meeting, the worker also draws an instantaneous,

one-off mobility shock ξ from the distribution G1 (with full support and density g1).

The worker experiences the mobility shock if they accept the alternative job or choose

to become unemployed but not if they remain in their current job. Unlike unemployed
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workers, who always experience cost shocks, mobility shocks for the employed may be

negative or positive. We assume that both firms observe the realized ξ and compete

for the worker’s services in an auction that we will describe below.

Meeting technology. Let M(L, V ) be the number of meetings per unit of time,

where L is the effective number of workers searching and V is the total number of

vacancies. Specifically, L = L0 + κL1, where L0 =
∑X

x=1 ℓ
0
x, L

1 =
∑X

x=1

∑Y
y=1 δx,yℓ

1
x,y,

and κ represents the relative search efficiency of the employed workers. We define the

equilibrium meeting rates for unemployed and employed workers as follows:

λ0 =
M

L
, λ1 = κ

M

L
, and λ

j
= (1− λj). (1)

Similarly, a vacancy meets an unemployed worker with probability λ0L0/V , drawing

a type x from the distribution ℓ0x/L
0. It meets an employed worker with probability

λ1L1/V , drawing from the cross-sectional distribution of matches ℓ1x,y/L
1.

Further discussion of types and shocks. Worker and firm types are assumed to

be discrete, with production, disutility, and the exogenous separation rate differing

arbitrarily across (x, y) matches. This representation offers substantial flexibility. It

encompasses scenarios where worker types are characterized by multiple traits, with

production, disutility, and separations varying according to these traits. For exam-

ple, consider a type x defined by a vector of K characteristics (e.g., analytical skill,

verbal skill, strength, dexterity, empathy, charisma, self-esteem, health status, etc.).

Moreover, subsets of these characteristics (which may overlap) influence production,

disutility, and the probability of separation in different ways across firm types. In this

paper, we focus the analysis at the type level, which is sufficient for modeling mobility

and wage determination. We do not explicitly define types in terms of characteristics,

partly because most matched employer-employee datasets lack detailed measurements

of the various skills of workers and the task requirements of jobs.3

3For the purpose of plotting the figures in Section 4, we need to choose a label for the types. We
follow BLM and label worker types according to the average wage received across all jobs, while firm
types are labeled by the average wage they pay to all workers. In this discussion, we tend to refer
to high wage workers and high wage firms as high types. Note that this ordering will not necessarily
correspond to the ordering of any single characteristic that defines a type. Indeed, as pointed out by
Lindenlaub and Postel-Vinay (2023), it is generally not possible to create a label that is monotonic
with respect to all the characteristics that define a type. That said, the equilibrium allocations and
wages can be summarized by types and do not require a detailed specification of the characteristics.
For this reason, the average wage is a natural label to adopt when considering the allocations of
worker types to firm types. There are certainly cases in which researchers would be interested in how
the different characteristics of a type affect mobility and wages. For example, Lise and Postel-Vinay
(2020) estimate an equilibrium labor search model using a combination of NLSY and O*Net data,
explicitly representing worker (firm) types by a vector of cognitive, manual, and interpersonal skills
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Match production fx,y is a well-defined concept in principle; however, it is generally

not directly measurable with data, as we only observe the sum over match outputs

within a firm. Match specific disutility cx,y encompasses various difficult-to-measure

factors, such as unpleasantness, difficulty, pain, stress, and the physical demands of

a job, along with location-specific aspects like weather and city size. Moreover, there

is no reason to believe that different worker types would share similar perceptions of

disutility across firm types, partly because they are likely to perform very different

tasks. For instance, an accountant would engage in roughly the same tasks at a large

coffee chain as they would at a coal mine. Conversely, an unskilled laborer might be

sweeping up at the coffee shop while shoveling coal down the shaft at the mine.

Finally, the mobility shock ξ encompasses all the idiosyncratic aspects of the job-

changing process that are not directly modeled. This includes the monetary costs of

physically relocating and the capital gain or loss in the housing market associated

with changing locations. It also captures the desire to relocate in order to cohabit

with a spouse who has already accepted a job elsewhere, as well as the momentary

satisfaction of informing a supervisor about the resignation. Heuristically, mobility

shocks ξ will lead to idiosyncratic job-to-job transitions associated with a wage cut,

while match-specific disutility/amenities cx,y will generate systematic differences across

worker types regarding the likelihood of job-to-job transitions associated with a wage

cut, both conditional on match production fx,y.

1.3 Competition, hiring, and wage determination
Define W 0

x as the value of an unemployed worker and Π0
y as the value of a vacancy.

An employment contract promises a value W to the worker, where W must be strictly

greater than W 0
x for employment to be preferred over unemployment. We refer to the

difference R = W −W 0
x ≥ 0 as the surplus for the worker or the value of the contract.

Define Π1
x,y(R) as the value of profit that a firm can achieve when employing a

worker and providing that worker with a surplus of R. Implicit in this definition is

a contracting space, which we will define later. The smallest value that satisfies the

worker’s participation constraint is R = 0. Whenever Π1
x,y(0) is positive, there is value

to be shared between the worker and the firm. In this case, we say that the match

is viable, and we denote the highest value of R that satisfies the firm’s participation

constraint by Sx,y.

In Section 1.4, we will characterize the contract that delivers a promised value R.

In this subsection, we first describe how the contract value R is determined in the case

(task requirements) and parametrically specifying the interactions in production.
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of poaching, that is, the competition for a worker between two potential employers.

Suppose that a worker of type x, employed in a firm of type y, meets another firm of

type y′ and draws a mobility shock ξ. The worker now has the possibility of making a

move and incurring the shock ξ. We assume that both x and ξ are common knowledge.

However, as in standard auctions, we do not assume that the firm types are observable.4

Definition 1. The poaching mechanism. The incumbent and the poaching firms report

their reservation surpluses, namelyB andB′, which are not necessarily equal to Sx,y and

Sx,y′ . There are three possible mobility outcomes: either the worker moves to y′, stays

with the incumbent employer, or becomes unemployed. The mechanism prescribes the

following policy:

1. If B′ + ξ > max {B, ξ}, the poacher wins and must deliver the surplus of

max {B, ξ} − ξ to the worker, who receives a total of max {B, ξ} following the

move.

2. If B ≥ max {B′ + ξ, ξ} = B′+ + ξ (with B′+ = max{B′, 0}), the incumbent wins

and must provide a surplus of at least B′+ + ξ to the worker.

3. If ξ > max {B,B′ + ξ}, the worker moves to unemployment and collects ξ.

We focus on strategies where the bid B from the incumbent is credible. This means

that, even in cases where the incumbent is certain to lose, there must exist a feasible

strategy to deliver B to the worker, i.e., B ≤ Sx,y.

1.4 Value functions
The firm’s problem The employer faces two distinct decision problems. First, it

must choose a bid B(ξ) in the event that the worker encounters a vacancy and draws

a mobility shock ξ. Second, for a specified promised value R, it must determine how

to implement it through wages and separations.

An employment contract can be defined recursively as a current worker surplus R,

a wage w for the first period, and continuation values at the end of the first period:

the status quo value R0 for a worker who is not approached by another firm and the

retention value R1(B
′, ξ) for a worker who is contacted by a firm with a bid B′ and a

mobility shock ξ. Let F 0 be the distribution of bids B′, which will be characterized

later.

Consider a firm type y employing a worker type x with a promised surplus R.

In calculating its value Π1
x,y(R), the firm anticipates all future events. In the event of

poaching at the end of the current period, the firm assumes that the poacher will adhere

4See Online Appendix B.1 for an alternating offer interpretation of this mechanism.
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to the mechanism. Therefore, if B(ξ) < B′+ + ξ the poacher wins, the incumbent firm

receives Π0
y, and the worker collects W 0

x+max {B(ξ), ξ}. If B(ξ) ≥ B′++ξ, the current

employer wins, and the mechanism imposes a minimum payment of W 0
x+B′++ξ to the

worker. This payment is a minimum because it may be below the promised surplus

R1. For any promised worker surplus R ≤ S, the firm’s problem is:

Π1
x,y(R) = max

{w,R0,R1(B′,ξ),B(ξ)}

{
fx,y − w +

δx,y
1 + r

Π0
y +

δx,yλ
1

1 + r
Π1

x,y(R0)

+
δx,yλ

1

1 + r

∫∫ [
1{B(ξ) ≥ B′+ + ξ}Π1

x,y(R1(B
′, ξ))

+ 1{B(ξ) < B′+ + ξ}Π0
y

]
dF 0(B′|x, ξ) dG1(ξ)

}
, (2)

subject to the constraints of promise-keeping, the auction, and participation:

R = u(w)− cx,y +
δx,yλ

1

1 + r
R0 +

δx,yλ
1

1 + r

∫∫ [
1{B(ξ) ≥ B′+ + ξ}R1(B

′, ξ)

+ 1{B(ξ) < B′+ + ξ}max {B(ξ), ξ}
]
dF 0(B′|x, ξ) dG1(ξ), (PK)

R1(B
′, ξ) ≥ B′+ + ξ for all B′+ + ξ < B(ξ) (AC)

R0 ≥ 0, and Π0
y ≤ Π1(x, y, R′), for R′ ∈ {R0, R1, B}, (C)

where 1
1+r

is the discount factor corresponding to the discount rate r, and 1{·} is an

indicator function equal to 1 if the statement is true and zero otherwise.

Equation (2) is understood as follows: First, the firm collects the flow output fx,y

and pays the wage w. Then, with probability δx,y, the match separates. In this case, the

firm recovers a vacancy in the next period, which has a value of Π0
y. With probability

δx,yλ
1, the worker draws a firm bidding B′ from F 0 and a preference shock ξ from G1.

The firm chooses the bid B(ξ) to submit to the auction for each of these encounters,

as well as the worker surplus R1(B
′, ξ) to deliver when it retains the worker. Finally,

it chooses R0 for the scenario in which no external contact is made. Each of these

decisions is conditional on the state (x, y, R).

When making these choices, the firm is subject to the promise-keeping constraint

(PK). This states that the contract {w,R0, R1(B
′, ξ), B(ξ)} needs to provide the worker

with the promised surplus R. The right-hand side of (PK) represents the surplus that

the worker gains from this contract. The worker receives the flow utility u(w) − cx,y.

Then, with probability δx,y, the worker is laid off; in this case, the worker obtains zero

surplus in the next period. With probability δx,yλ1, the worker is neither laid off nor

poached and continues with R0. With probability δx,yλ
1, the worker is contacted by
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a firm with a bid B′ drawn from F 0, and ξ drawn from G1. If B(ξ) ≥ B′+ + ξ, the

incumbent wins the auction and pays R1(B
′, ξ), which should be at least equal to the

value B′+ + ξ returned by the mechanism (AC). If B(ξ) < B′+ + ξ, the worker moves

either to the poacher (for a worker surplus equal to max{B(ξ), ξ}) or to unemployment

(for a worker surplus ξ). Here, we assume that the poacher pays the amount required

by the mechanism. Finally, (C) represents the worker’s participation constraint, the

firm’s limited commitment, and the credibility of the bid.

The value of unemployment. We assume that employers have full monopsony

power when they encounter an unemployed worker, which, in our auction mechanism,

is equivalent to being with a firm that has zero surplus. When an unemployed worker

of type x meets a vacancy of type y, it draws a negative mobility cost shock ξ from

G0. Employers must compensate the worker for this cost in order to hire them. There

are two possible scenarios. If Sx,y + ξ > 0, which means Sx,y > 0, the match is viable.

The firm hires the worker, paying −ξ to compensate for the mobility cost. The worker

receives a net surplus of zero. If Sx,y + ξ ≤ 0, no offer is made, and the worker remains

unemployed, also receiving zero surplus. The annuity value of unemployment for a

type-x worker is then simply

rW 0
x = (1 + r)bx.

The value of a vacancy. The annuity value for a firm with a vacancy of type y is

rΠ0
y= max

{B0
x(ξ),B

1
x(ξ)}

λ0L0

V

X∑
x=1

ℓ0x
L0

∫
1{B0

x(ξ) + ξ > 0}
[
Π1

x,y(−ξ)−Π0
y

]
dG0(ξ)

+
λ1L1

V

X∑
x=1

∫∫
1{B1

x(ξ) + ξ > B′}
[
Π1

x,y(B
′ − ξ)−Π0

y

]
dF 1(B′, x|ξ) dG1(ξ). (3)

F 1(B′, x|ξ) represents the distribution of workers and retention bids conditioned on the

mobility shock. When the worker is unemployed, the implicit retention bid B′ will be

0. When the worker is employed, the firm faces a distribution of retention bids derived

from the cross-sectional distribution of employed workers, along with the reporting

strategy of each of these firms. The vacant firm selects the values to report to the

auction, denoted B0
x(ξ) and B1

x(ξ). We adopt the minimum value constraint from the

auction as the promised value at the beginning of the match, as it satisfies the worker’s

participation constraint. Unlike the incumbent firm, there is no preexisting promised

value. Whenever the firm wins an auction, it realizes a capital gain of Π1
x,y(R)− Π0

y.

Theorem 1. Assume that the utility function u is bounded, twice continuously dif-
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ferentiable, strictly increasing, concave, and has bounded non-zero first and second

derivatives.

1. The profit value Π1
x,y(R) is bounded, continuous, strictly decreasing, and strictly

concave in R; and it is differentiable almost everywhere.

2. It is a weakly dominant strategy to bid B(ξ)=Sx,y, where Π1
x,y(Sx,y)=Π0

y.

3. The optimal contract is such that the chosen wage wx,y(R) solves

1

u′(w)
= −∂Π1

x,y(R)

∂R
,

and the optimal continuation values are R0 = R and R1(B
′, ξ) = max {B′+ + ξ, R}

for B′+ + ξ ≤ Sx,y .

Firms have a reservation value Sx,y that is equal to the contract surplus that gener-

ates minimal profit Π0
y. The incumbent firm is truthful and bids exactly its reservation

value. It will provide a constant value to the worker over time until a meeting with an

outside firm necessitates increasing this value to retain the worker. The wage remains

constant in the absence of an outside offer and increases whenever it is necessary to

counter an outside offer. Following a similar argument, truthfulness is also optimal for

poaching firms.

1.5 Equilibrium
In a stationary truth-telling equilibrium, the inflows and outflows of ℓ1x,y are equal:

ℓ1x,y

(
δx,y + δx,yλ

1

Y∑
y′=1

G
1(
Sx,y − Sx,y′

)
vy′

)

= λ0
vy
V
G

0
(−Sx,y)ℓ

0
x + λ1

vy
V

Y∑
y′=1

G
1(
Sx,y′ − Sx,y

)
δx,y′ℓ

1
x,y′ . (4)

With truth-telling, the distribution of retention bids faced by firms is given by:

F 0(B′|x, ξ) =
Y∑

y′=1

1{Sx,y′ ≤ B′}vy′
V

, F 1(B′, x|ξ) =
Y∑

y′=1

1{Sx,y′ ≤ B′}δx,y′
ℓ1x,y′

L1
. (5)

This states that employed workers receive outside bids from the cross-section of va-

cancies, vacancies draw from the cross-section of employed workers who have not been

laid off, and all firms submit truthful bids.

Definition 2. A stationary search equilibrium with sequential auctions is defined by

the following components: meeting probabilities λ0 and λ1, employment measure ℓ1x,y,
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bid distributions F 0(B′|ξ, x) and F 1(B′|ξ, x), and firm value functions Π0
y and Π1

x,y(R),

along with their corresponding policies, such that:

1. The meeting probabilities λ0, λ1 are consistent with the meeting technology (1).

2. Taking F 0 and F 1 as given, Π1
x,y(R) and Π0

y solve equations (2) and (3), which

take into account the mobility decisions of the workers.

3. The policies of Π1
x,y(R) and Π0

y are truth-telling: for firm y employing worker x,

B(ξ) = Sx,y and for vacancy y, B0(x, ξ) = B1(x, ξ) = Sx,y.

4. ℓ1x,y satisfies (4) and F 0(B′|x, ξ), F 1(B′, x|ξ) are generated by (5).

2 Properties of the equilibrium
In this section, we present properties of the model that will be useful for identification

and estimation in Sections 3 and 4. (See the online appendix B.2 for additional details.)

Equilibrium wage equation. At equilibrium, the value function for an employed

worker can be inverted to obtain a wage equation in terms of the current surplus R

and the maximum surplus Sx,y:

u(wx,y(R)) = cx,y +
r + δx,y
1 + r

R +
r

1 + r
W 0

x

− λ1δx,y
1 + r

Y∑
y′=1

[∫ Sx,y−S+
x,y′

R−S+
x,y′

(
S+
x,y′ + ξ −R

)
g1(ξ) dξ

+

∫ ∞

Sx,y−S+
x,y′

(max{ξ, Sx,y} −R) g1(ξ) dξ

]
vy′

V
. (6)

The wage is increasing in the promised surplus R. For a given R, the wage increases

with the disutility of labor, net of amenities cx,y, and decreases with the maximum

surplus of the worker Sx,y. There are compensating differentials for the current cx,y

(Rosen, 1986) and for the extent of potential wage growth (Postel-Vinay and Robin,

2002).

Surplus equation. Since Π1
x,y(S) = Π0

y, we can deduce that the maximum wage in

a match (x, y) is
wx,y = wx,y(Sx,y) = fx,y −

r

1 + r
Π0

y. (7)

We also know that, at this point, the worker is receiving maximum surplus. We can

substitute equation (7) and R = Sx,y into the wage equation (6) to obtain the following

equation for maximum worker surplus Sx,y:

(r + δx,y)Sx,y = (1 + r) [u(wx,y)− cx,y]− rW 0
x + λ1δx,y

∫ ∞

Sx,y

G
1
(ξ) dξ. (8)
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The flow value of the maximum worker surplus comprises the flow utility (1 +

r) [u(wx,y)− cx,y] minus the unemployment annuity rW 0
x , plus the expected value of

max {ξ − Sx,y, 0} (the last term). If the mobility shock ξ is greater than the current

surplus Sx,y, the value of the worker’s outside option when moving is ξ, not the incum-

bent’s reservation value Sx,y.

We will also refer to Sx,y as the match surplus. This is a slight misuse of language,

as the term “match surplus” usually refers to the total production of a match minus

the sum of what the various parties can produce on their own. This definition naturally

arises in transferable utility models (for example, Lise et al., 2016). Here, there is no

definition of the surplus of a match that is independent of how it is shared. Utility is

imperfectly transferable because firms’ valuations are expressed in units of production

(cash flow minus wage bill), whereas workers value wages through a utility function,

and their job valuations are expressed in units of utility.

Firm profits and the value of a vacancy. Using Theorem 1, we can express firm

profits (2) in terms of equilibrium wages.

Π1
x,y(R) = Π0

y +

∫ Sx,y

R

dR′

u′(wx,y(R′))
. (9)

Similarly, we can express the value of a vacancy (3) as a function of the equilibrium

wage.

rΠ0
y =

λ0L0

V

X∑
x=1

1{Sx,y > 0} ℓ
0
x

L0

∫ 0

−Sx,y

1{ξ ∈ Supp(G0)} G
0
(ξ)

u′(wx,y(−ξ))
dξ

+
λ1L1

V

X∑
x=1

1{Sx,y > 0}
Y∑

y′=1

δx,y′ℓ
1
x,y′

L1

∫ Sx,y′

Sx,y′−Sx,y

1{ξ ∈ Supp(G1)} G
1
(ξ)

u′(wx,y(Sx,y′ − ξ))
dξ.

(10)

In the next section, we will utilize these equilibrium properties for identification.

3 Identification
The model we have specified is particularly rich because it allows for the possibility

of sorting in an environment with frictions. It includes amenities and mobility shocks

that can, in principle, enable a complex structure of transitions and wage growth.

However, the value of such a rich specification depends on our ability to identify the

key components without relying on assumed parametric forms. This will define the

empirical content of the model. We will now discuss the identifiability of our model.

Throughout, we assume that the discount rate r and the flow utility function u(w)
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are known. The deep parameters/functions of the model for which we need to demon-

strate identification are the production function fx,y, the disutility (net of amenity)

function cx,y, the utility of unemployment bx, the separation rate δx,y, the population

measures of worker types ℓx and job types ny, the distribution of the mobility shocks

for the unemployed G0 and the employed G1, and parameters λ0, λ1.5

To recover the structural parameters of the model, we assume the existence of

matched employer-employee data over a finite number of periods T . Each individual i

is associated with a latent type xi, and each employer j is associated with a latent type

yj, but neither is observed by the econometrician. For each period t and individual i, we

observe the employment status eit ∈ {U,E}, and if employed, the wage compensation

wit and the current employer jit. We denote the joint density of these observables by

P[ji1, wi1, ei1, ..., jiT , wiT , eiT ], which can be obtained directly from the data. We also

assume that a measure of the aggregate labor share is available.

We denote mit = EE if the worker remains employed with the same firm between

t and t + 1; mit = EU if the worker separates from a job and becomes unemployed;

and mit = JJ if the worker changes employers. We denote mit = UU if the worker

is unemployed during both t and t + 1; and mit = UE if the worker transitions from

unemployment to employment.

3.1 Step 1: Distributions, transition probabilities, and wages
Assuming finite worker and firm latent types, we build on the results in Bonhomme,

Lamadon, and Manresa (2019, BLM) regarding the identification of nonlinear Marko-

vian wage equations and distributions with two-sided heterogeneity. To apply BLM’s

framework, we first establish the following result.

Lemma 1. The sequential auction model presented in Section 1 generates a Markovian

law of motion for wages and employment, conditional on worker type, as follows:

P[wt+1, yt+1,mt+1|x,wt, yt,mt,Ωt−1] = P[wt+1, yt+1,mt+1|x,wt, yt,mt]

where Ωt = {wτ , yτ ,mτ}τ=1,...,t is the information set in periods 1 to t.

This step allows us to estimate a flexible reduced-form model of wages and mo-

bility that encompasses the structural model. This will be one of the rare cases in

which indirect inference can be proven to be consistent. Usually, the identification of a

5Note that the matching function M(L, V ) is only identifiable with aggregate (over time or space)
variation of the unemployed and the vacancies. However, this function is only required for counter-
factual simulations, and we can borrow it from the literature. Therefore, we focus on identifying λ1

and λ0.
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structural model is based on intuitive considerations regarding how a moment should

help identify a parameter. However, the injectivity of the binding function linking

auxiliary parameters to structural parameters is rarely formally proven. Here, we start

by proving that our model belongs to a large class of latent Markov models. In the

second step, we will formally prove the identification of structural parameters from the

auxiliary model. Importantly, the identification of the distribution of latent worker and

firm types will also be achieved in the first step. This is where usual moment-based

estimators fail to produce convincing estimates of unobserved heterogeneity, as it is

difficult to separately identify different latent groups using aggregate moments. Hage-

dorn et al. (2017) was the first to propose an identification and estimation procedure

that incorporates some of these ideas for the model in Shimer and Smith (2000).

Assuming a finite number of worker types K, and adapting BLM’s method, we

show that the cross-sectional distribution P[x, y, et = E] = ℓ1x,y, the moving probabili-

ties P[mt = m |x, yt = y, et = E] := pm(x, y) for m = EU,EE, JJ, the transition prob-

ability P[yt+1,mt = JJ |x, yt] := pJJ(yt+1|x, yt), the law of motion for within-job wages

P[wt+1 ≤ w |wt, x, yt,mt = EE] := FEE(w|x, yt, wt), and the distribution of wages after

a move P[wt+1 ≤ w | x, yt+1, yt,mt = JJ] := FJJ(w|x, yt, yt+1) are nonparametrically

identified from data on movers with two periods before and after the move.

We include unemployment as an additional state, allowing us to measure transi-

tion rates for each type of worker into and out of employment. We then recover the

distribution among the unemployed P[x, et = U] = ℓ0x, the probability of exiting un-

employment conditional on type P[mt = UE |x, et = U] := pUE(x), the distribution of

the destination firm conditional on type P[yt+1 |x,mt = UE], and the wage conditional

on making that move P[wt+1 ≤ w|x, yt+1,mt = UE] := FUE(w|x, yt+1) (see the online

appendix B.4 for complete details).

From this point onward, we can consider each of these distributions to be known.

3.2 Step 2: Surpluses and wage functions
Let us denote by Rx,y(w) the inverse of the wage function R 7→ wx,y(R) for any given

match type (x, y). We call it the worker surplus function. First, we prove the following

identification result.

Lemma 2. For each match (x, y), we identify its viability ϕx,y = 1{Sx,y > 0}. For

each viable match (x, y), we identify the match surplus Sx,y, the worker surplus function

Rx,y(w), and the equilibrium wage function wx,y(R) from the following observables:

• the match type distribution P [x, yt = y, et = E ] = ℓ1x,y,
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• the probability of within-job wage increases,

P [mt = EE, wt+1 > w|x, yt = y, wt = w, et = E ] = FEE(w|x, y, w),

• the mobility probabilities P[mt = m|x, yt = y, et = E] = pm(x, y), mt = EU, JJ.

Viability ϕx,y is directly identified from the fact that the matching sets are observed

based on the knowledge of ℓ1x,y from the previous step: ϕx,y = 1 if and only if ℓ1x,y > 0.

The link between the distributions identified in Step 1 and the surplus functions is

more subtle and is an important result. We deduce from equation (6) that differenti-

ating the worker surplus Rx,y(w) with respect to the wage w yields:

∂Rx,y(w)

∂w
=

(1 + r)u′(w)

r + δx,y + λ1δx,y
∑Y

y′=1G
1 [
Rx,y(w)− S+

x,y′

] vy′

V

, (11)

where the denominator is equal to r plus the probability of any change to the current

state, which includes the probabilities of moving to unemployment, changing jobs, and

staying but receiving a wage increase:

δx,y + λ1δx,y

Y∑
y′=1

G
1 [
Rx,y(w)− S+

x,y′

] vy′
V

= P[mt = EU|x, yt = y, et = E] + P[mt = JJ|x, yt = y, et = E]

+ P[mt = EE, wt+1 > w|x, yt = y, wt = w, et = E].

The probability of any of these changes, conditional on a match (x, y) , is known from

Step 1 and is therefore identified.

The minimum wage in an (x, y) match is associated with a contract that yields zero

surplus: Rx,y(wx,y) = 0. We therefore obtain Rx,y(w) by integrating (11) for wages w

in the support [wx,y, wx,y]:

Rx,y(w) =

∫ w

wx,y

∂Rx,y(w
′)

∂w
dw′.

The match surplus follows as Sx,y = Rx,y(wx,y) (the maximum surplus gives the maxi-

mum wage). Lastly, wx,y(R) is identified as the inverse of Rx,y(w).

It is important to note that equation (11) is quite general. For example, it will

also be valid in a model without mobility shocks. The key property of the model that

makes this possible is the fact that firms offer insurance when not matching outside

offers, along with the fact that outside offers are independent of the current state.

This implies that the rate at which the value increases is related to the probability of

a change in state occurring.
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3.3 Step 3: Mobility shock and vacancy distribution
Assumption 1. We assume the following about the shock distributions:

(a) G1 has zero median: G1(0) = 1/2.

(b) G1 belongs to a parametric family G1 = {G1(ξ; θ)}θ, where θ is identified from

observations in any bounded interval.

(c) The distribution G0 has support in (−∞; 0].

(d) G0 belongs to a parametric family G0 = {G0(ξ; θ)}θ, where θ is identified from

observations in any bounded interval.

Assumption 1(a) imposes a normalization that allows separating λ1 from G1(ξ). It

only assumes that the distribution of the shock has a median of 0, i.e., it is centered.

Assumption 1(c) reiterates the support restriction for G0(ξ), which rules out positive

preference shocks when transitioning out of unemployment. The assumptions 1(b)

and 1(d) impose restrictions on the families of distributions that we can consider. This

is an extrapolation assumption. It encompasses a large set of functions; for example,

the family could include both normal and logistic distributions, or it could incorporate

any polynomial transformation of ξ within a logit.

Lemma 3. Define S = maxx,y Sx,y.

1. Under Assumption 1(a), G1(ξ) is nonparametrically identified on ξ ∈ [−S, 0]

from FJJ(w|x, y, y′), along with knowledge of Rx,y(w) and Sx,y.

2. Additionally, with Assumption 1(b), G1(ξ) is identified everywhere.

This lemma establishes that we can learn very flexibly about G1(ξ). The result comes

from the following characterization of job-to-job wages. Conditional on drawing y′, the

probability of moving is equal to the probability of drawing ξ such that Sx,y′ +ξ > Sx,y.

Conditional on moving, the wage wx,y′(R
′) is determined by Rx,y′(w

′)+ ξ = Sx,y. Thus

the distribution of wages at a job change, conditional on x, y, y′ is given by

FJJ(w|x, y, y′) =
G

1
[Sx,y −Rx,y′(w)]

G
1
[Sx,y − Sx,y′ ]

.

Lemma 4. The probability of separation δx,y, the rate of job meetings λ1, and the prob-

ability mass of vacancies vy′/V are identified from pJJ(y
′|x, y), pEU(x, y), and G1(ξ).

This result comes from the expression for the transition pJJ(y
′|x, y) that relates the

probability of moving to the difference in surpluses in the distribution of the preference

shock, given by:
pJJ(y

′|x, y) = δx,yλ
1vy′

V
G1(Sx,y − Sx,y′). (12)
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Since this is observed for all (x, y, y′) over viable matches, and G1(ξ) and Sx,y are

known, we can use the relative flows pJJ(y
′
1|x, y)/pJJ(y′2|x, y) to recover vy′/V .

We note here that equation (12) allows us to identify G1 on a larger support than

Lemma 4, since we can use transitions where Sx,y−Sx,y′ > 0. This allows for the

relaxation of the use of Assumption 1(b). Combining this with pEU(x, y), the layoff

rate δx,y is identified by the conditional probability of separation implied by the model.

Lemma 5. Given pUE(x, y), FUE(w, x, y), and vy/V ,

1. λ0G0(ξ) is non parametrically identified on ξ ∈ [−S̄, 0].

2. Additionally, with Assumption 1(d), λ0G0(ξ) is identified everywhere.

This result arises from the expression of the flow of unemployment exits alongside the

wage conditional upon exiting unemployment. Importantly, we can learn G0(ξ) very

flexibly. In particular, for any counterfactual where the surpluses do not move outside

of S̄, we do not need the extrapolation Assumption 1(d).

3.4 Step 4: Production function and amenities.
Lemma 6. Under Assumption 1, and with knowledge of λ1, G1(ξ), λ0G0(ξ), Sx,y, and

vy/V , we identify fx,y, c̃x,y = cx,y + bx, V , and ny based on the knowledge of the

aggregate labor share.

Establishing the identification of fx,y leverages important properties of the model.

First, we can express the output of the match using the equilibrium wage wx,y(R), the

surplus Sx,y, and the value of a vacancy Π0
y:

fx,y = wx,y(Sx,y) +
r

1 + r
Π0

y, (13)

where the only unknown part is Π0
y. Using equation (10), we see that Π0

y is only

unknown up to the total number of vacancies V .6 Hence, the match output is known

up to one coefficient. Integrating the output of the match against the already identified

distribution of matches ℓ1x,y/L
1 expresses V as a function of the labor share and known

quantities:
labor share =

E [wit]

E
[
wxi,yj(i,t)(Sxi,yj(i,t)) +

1
V

rV
1+r

Π0
y

] . (14)

This is a substantive result since we did not assume transferable utility, where

knowledge of Sx,y would have directly provided us with Π0
y up to scale. Here, instead,

we used the property of the optimal contract that relates the Pareto frontier to the

marginal utility of the wage, as captured in the equation (10).

6Equation (10) equates the value of a vacancy with the expected gain from matching. If an
additional period of vacancy incurs a type specific cost ky, this vacancy cost would not be identifiable.
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The final part of Lemma 6 demonstrates the identification of the disutility term

c̃x,y = cx,y + bx. Without external information on the value of unemployment, we

can only treat unemployment as the external good and measure each job type relative

to this option. This means that we identify c̃x,y = cx,y + bx, which captures the

disutility of a particular job, net of any amenities, as well as the forgone leisure and

home production. We can identify this from the surplus equation (8) where everything

is known other than the term c̃x,y. Thus, c̃x,y is identified as the component of the

maximum flow surplus that is not already accounted for by the maximum wage and

the expected value of future mobility shocks.

Taking stock. In this section, we have developed identification of the model struc-

ture in a transparent manner. The surplus of any (x, y) match is identified by aggregat-

ing the marginal utility of the wages observed in the match, weighted by the expected

duration in the state. The expected duration encodes the revealed preference informa-

tion of the workers. The production function is identified by the maximum wage paid

in an (x, y) match plus the opportunity cost of a vacancy for a firm. The disutility of

labor, net of amenities, is identified by the discrepancy between the surplus and the

maximum wage in an (x, y) match. In other words, c̃x,y is needed to rationalize any

systematic differences in the firm rankings of workers based on mobility-weighted wages

compared to wage-based rankings alone. Finally, the distributions of mobility shocks

are identified by idiosyncratic worker mobility that is inconsistent with the systematic

rankings implied by the surplus, along with the distribution of wages at employment

transitions.

3.5 Identification Under Parametric G0 and G1

Assumption 2. Assume the following about the shock distributions:

(a) G0(ξ) = 2G(ρ0ξ) and ξ ≤ 0.

(b) G1(ξ) = G(ρ1ξ).

(c) G is known, is invertible, is not linear, and has a known G(0).

In Web Appendix B.5, we show that, under Assumption 2, we can first identify

vy/V , λ0, λ1, ρ0, and all the match surpluses Sx,y up to the scalar ρ1 using only data

on worker transitions. Then, in a second stage, we can use the wage data to separately

identify fx,y and c̃x,y. In this case, identification is very transparent: conditional on

worker type, relative mobility between job types y1 and y2 informs us about the relative

surplus workers enjoy at these jobs. Wages, conditional on the known surplus, then

allow us to construct these surpluses in terms of the pecuniary and non-pecuniary

21



aspects of the jobs. In Web Appendix B.5, we also provide a proof of the consistency of

the estimator. For estimation in the following section, we adopt this more transparent

version of identification, assuming that G is represented by the logistic distribution.

4 Data, Estimation and Results
Before we describe the data, we provide an overview of our estimation procedure.

While we build on the identification argument, estimation requires us to make some

functional-form assumptions. In particular, we adopt Assumption 2 with a logistic

distribution for G. For Step 1, we specify a flexible discrete heterogeneity model

directly following BLM. Next, we make direct use of the logistic specification to estimate

surpluses and mobility parameters, given our knowledge of the parameters of G0(ξ)

and G1(ξ) from the mover probabilities using Equation (12). We finally use these

scaled surpluses together with the wage moments of FEE, FUE and FJJ to estimate the

remaining parameters. Importantly, fx,y, c̃x,y and δx,y remain completely unrestricted.

Data We use matched employer-employee data from Sweden. The data comprises

annual tax records for all jobs in Sweden. Each record provides information on the

start and end month of the spell in each year, an employer identifier, an employee

identifier, and the total compensation for the year.

Using the monthly spell level information, we construct transition rates at the

quarterly frequency and the associated monthly earning equivalent based on the number

of months worked and total compensation. We track workers in and out of recorded

unemployment and derive their employment state accordingly. We use five years of

data from 2000 to 2004 and include all workers under the age of 50. See the online

appendix B.8 as well as Balke and Lamadon (2022) and Friedrich et al. (2022) for

additional details.

Estimation of the reduced-form model We start by classifying the firms accord-

ing to BLM. We group firms based on the empirical cumulative distribution function

(CDF) of wages in the cross section. Given this classification, we estimate the dis-

tribution of types and wages, as well as the probability of moving using maximum

likelihood.

We specify flexible probability models for transitions out of unemployment, wages

out of unemployment, wages while on the job, the probability of moving to a new firm,

and the wage conditional on a move. As in the rest of the paper, we use x to denote

discrete worker types and y to denote discrete firm types
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We continue to denote ℓ0x as the probability that a worker is unemployed and of

type x, and ℓ1x,y as the probability that a worker is employed, of type x, and matched

with a firm of type y. We leave these probabilities completely unrestricted. We also

leave the probability of exiting unemployment unrestricted, as well as the probability

for a worker of type x to join a firm of type y, which we denote pUE(x, y). Finally,

we specify a statistical model for the hiring wage for a worker of type x who exits

unemployment and joins firm y as log-normal with unrestricted mean µUE(x, y) and

variance σUE(x, y). Hence, the probability of observing a wage w for a worker joining

firm y in the data is given by:

P[yt=y, wt=w |x,mt−1=UE] = pUE(x, y)N
(
w, µUE(x, y), σUE(x, y)

)
,

where N is the density of the log-normal distribution. The evolution of wages on the

job is specified as an auto-regressive process with (x, y) specific intercept and a common

auto-regressive coefficient:

P[wt |x, y, wt−1,mt−1=EE] = N
(
wt − γwt−1, µEE(x, y), σEE(x, y)

)
.

The probability of a transition from job to job is left unrestricted as a function of x, y,

as is the type of destination firm y′. It is denoted as pJJ(x, y, y
′). Importantly, following

the model presented in the previous section, the wage conditional on a move follows a

distribution that depends only on the worker and firm types. However, conditional on

these types, it is independent of the wage before the move. We then use a log-normal

distribution and let its mean and variance be unrestricted functions of x, y, y′.

We jointly estimate the allocations ℓ0x and ℓ1x,y, the mobility parameters pUE(x, y),

pJJ(x, y, y
′), and δx,y, and the parameters of the statstical wage equation µUE(x, y),

σUE(x, y), µEE(x, y), σEE(x, y), µJJ(x, y, y
′), σJJ(x, y, y

′), γ using maximum likelihood.

Given X worker types and Y firm types, this amounts to a number of parameters of

the order of 3X · Y 2. In estimation, we focus on X = 5 and Y = 10.

Reduced Form Results From the Step 1 estimates, we can already see clear dif-

ferences between the outcomes of different types of workers, indicating a pattern of

sorting of workers between firms. In Figure 1, we show most of the estimated objects

from Step 1. In panel (a), we plot the mean log wage for each worker type x when

matched to a firm type y. For the purposes of the figures, we order the worker types

by their mean wage and the firm types by the mean wage they pay. This ordering

appears sensible and produces a clear ranking of firms, where all workers are generally

paid more as we move to higher firm types. The figure also reveals a relatively stable

ordering of workers, except for the lowest worker type concerning the top two firm
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Figure 1: Type distributions and conditional transitions (Step 1 estimates)

Notes: Firm and worker types are ordered by mean wages.

types, where the data are sparse.

In panel (b), we plot the composition of worker types employed in each type of

firm. The cross-sectional distribution exhibits a clear and strong pattern of separating

high-paid workers into high-paying firms. In panel (c), we plot the share of total

employment for each type of firm in the cross section. In panels (d), (e), and (f),

we plot the estimated proportions of workers by type, the type-specific unemployment

rate, and the type-specific job-finding rate from unemployment. In panels (g), (h),

and (i), we plot the match specific probabilities of transitioning from employment to

unemployment, changing jobs, and moving to a higher firm type following a job change.
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Figure 2: Surplus and Firm Rank (Step 2)
Notes: We plot mean the surplus Sx,y and the comparison of firm rankings based on wages and
surplus. Estimates are from step 2.

The estimates in Step 1 provide a clear picture of what distinguishes the different

worker types from one another. Take, for example, the lowest-type workers, who make

up about a quarter of the population. Not only do they have the lowest average

earnings when employed, but they also have the highest unemployment rate (over

40%), which results from the lowest probability of moving from unemployment to

employment, combined with a probability of transitioning into unemployment from

any type of firm that is about 10 times higher than the average for the other types of

workers. These workers also have high job-to-job transition probabilities; however, they

have among the lowest probabilities of moving to a higher paying firm when changing

jobs. On the other hand, workers in the highest category, comprising about 7% of

the population, have the highest wages when employed, unemployment rates below

5%, a high probability of transitioning from unemployment to employment, and a low

probability of separating from employment to unemployment. Like the lowest type,

they also have a high job-to-job transition rate, but when they change jobs, they have

the highest probability of moving to a higher paying firm.

To summarize, it is clear from the Step 1 estimates that worker types differ across

important wage and mobility dimensions, and that these differences generate a distri-

bution of worker types across firm types that is strongly positively sorted.7

7In Online Appendix Figure 7 , we plot the stationary distribution of worker types across firm
types implied by the model, along with the cross-sectional distribution in the data estimated in Step
1. The distributions align remarkably well, which supports the restriction of attention to the steady
state of the model.
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Estimation of surpluses, vacancy rates, and meeting rates. Under Assump-

tion 2 and a logistic G we have:

G0(ξ) =
2

1 + e−ρ0 min{0,ξ} , G1(ξ) =
1

1 + e−ρ1ξ
.

For each (ρ0, ρ1), we estimate surpluses, vacancies vy/V and λ0 and λ1 to maximize the

likelihood of the transitions estimated in the reduced form model (see Online Appendix

B.9 for the likelihood). We constrain the surplus to be positive whenever ℓ1x,y > 0, as

implied by the theory. Given such surplus, we compute the mean full-year employment

wage growth of stayers, as well as the difference in full-time employment wages after

a move from unemployment versus from another firm, as captured in the following

moments:

m1 =E [logwt − logwt−4| st=st−4=1, mt−4=EE] ,

m2 =E [E [logwt|x, y, st=1,mt−4 = JJ]− E [logwt|x, y, st=1,mt−4 = UE]] ,

where t represents a quarter and st=1[mt−1=mt−2=mt−3=EE] denotes a full time em-

ployment year. In the data m̂1 = 0.01 and m̂2 = 0.083. The procedure matches them

exactly. We obtain estimates of ρ̂1 = 0.42 and ρ̂0 = 0.07. This suggests that there is

a greater variance in costs when leaving unemployment than when transitioning from

another firm.

In Figure 2(a), we plot the estimated surplus Sx,y. We note several interesting pat-

terns in the surplus implied by transitions between firm types. First, while mean wages

suggest an apparent common ranking of firms by workers, mobility patterns do not sup-

port this ranking. In Figure 2(b) we plot the highest paying firm and the highest surplus

firm by worker type. Although there is unanimous agreement among worker types re-

garding which firms offer high-pay, there is complete disagreement among worker types

about which firms provide high surplus. These results align well with the reduced form

empirical findings of Lentz et al. (2023), demonstrating that inferences about sorting

based solely on wage information differ significantly from those that incorporate mo-

bility patterns. In the next sections, we turn to estimating the underlying structure

that provides a fully coherent interpretation of these results.

Disutility of labor and the production function. We use equation (6) and iden-

tified quantities to obtain an estimate of the type-specific disutility of labor c̃x,y. We

then have all the elements to construct Π0
y using equation (10) up to one scale value,

which is the total number of vacancies. We obtain this scale value by matching a labor

share of 0.75 using equation (14). We then use equation (13) to recover the production
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Figure 3: Disutility net of amenities and production function (Steps 4 and 5)

function fx,y.

We plot the estimates of c̃x,y and the log of fx,y in Figure 3. There are several

noteworthy patterns here. First, the average disutility of work increases monotonically

with worker type; higher worker types face a greater opportunity cost of work. For

the lowest worker types, the disutility of labor increases with firm type, indicating

that while these firms offer good pay, they are unattractive to low-type workers in

non-wage dimensions. In contrast, for the highest worker type, the disutility of labor

is high but effectively independent of firm type. Finally, the estimates reveal striking

monotonicity in both dimensions x and y (except for the lowest worker type paired

with the highest firm, where there is limited data). Turning to the estimates of the

production function, we observe striking monotonicity in both x and y, again with the

exception of the pairing of the lowest worker type and the highest firm type, where very

few matches occur. The monotonicity present in the estimates of c̃x,y and fx,y supports

our choice of ordering workers and firms according to the mean wages in Figure 1(a).

5 Wage and value decomposition
In this section, we use the estimated model to decompose the variance of log wages,

we assess the quantitative importance of mobility shocks, interpret well-documented

empirical regularities through the structure of the model, and derive and present model

consistent separation and hiring elasticities.

Wage variance decomposition and compensating differentials. We begin

our decomposition of the variance of log wages with the standard within-worker and
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between worker decomposition:

V ar(logw)︸ ︷︷ ︸
total

= E[V ar(logw|x)]︸ ︷︷ ︸
within worker: 28%

+V ar(E[logw|x])︸ ︷︷ ︸
between worker: 72%

. (15)

Turning first to the within worker (within x-type) term, we decompose this into inter-

pretable sources in equation (16). For a given worker, the wage variation is generated

from three different sources. The first is the variation in wages due to compensating

differentials. In the face of non-wage differences between jobs, different firms must

pay the same worker different wages to deliver the same value (Rosen, 1986). Labor

market frictions allow for two additional sources of variation. The presence of search

frictions allows for the coexistence of firms that offer different values to the same worker

(Mortensen, 2003). The effect of search frictions is amplified by sequential auctions,

as this allows a firm to offer the same worker a different value over time as their

outside option evolves. This variation within a worker-firm match is induced by the

sequential auction mechanism (Postel-Vinay and Robin, 2002, PVR), which prices in

both the effect of the outside firm and the mobility cost.8 We will refer to these three

sources of within worker-type variation as compensating differentials, search frictions,

and sequential auctions; or Rosen, Mortensen, and PVR sources for short.9

For a fixed worker type x, we first decompose wages into variation within and

between a fixed surplus value R. Second, we decompose the variation between R into

the variation between firms and within firms. To simplify notation, we first define

µR = E[logw|R, x] and write:10

V ar(logw|x)︸ ︷︷ ︸
within worker

= E[V ar(logw|R, x)|x]︸ ︷︷ ︸
(a) Rosen

+V ar(E(µR|y, x)|x)︸ ︷︷ ︸
(b) Mortensen

+E[V ar [µR|y, x] |x]︸ ︷︷ ︸
(c) PVR

(16)

We present this decomposition in Figure 4 for each worker type separately, as well

as for the average across the worker types. Each bar presents the share of the wage

variance within the worker that is attributed to (a) Rosen compensating differentials,

(b) Mortensen frictions, and (c) sequential auctions of PVR. Looking first at the aver-

age, the share of wage variation for a typical worker due to compensating differentials is

50%. This is an important finding, as it implies that for the typical worker, half of the

variation in observed wages can be attributed to compensating differentials that do not

8While there are a finite number of combinations of x, y, and y′, there is a continuum of mobility
shocks ξ. Since ξ is priced in, there is a continuum of worker values in each (x, y) match R ∈ [0, Sx,y].
This implies a continuum of wages, even conditional on x, y, and y′.

9Our labeling generalizes the one adopted by Sorkin (2018) to include the within match dispersion
resulting from the sequential auction between incumbent and poaching firms.

10See Online Appendix B.6 for complete derivation.
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Figure 4: Within worker wage variance contribution

Notes: We plot the three terms of the equation (16) for each type of worker and for the average worker
in the cross section. The bars represent the share of the variance within the worker accounted for
by (a) Rosen compensating differential, (b) Mortensen frictions, and (c) sequential auctions of PVR.
These are as a share of the within-worker variance, which amounts to 28% for the total variance.

reflect utility differences. Second, there are substantial differences between workers. At

the bottom of the distribution, there is considerably less variation in value compared

to the variation in wages. About 67% of the wage variation for the lowest group is the

compensating differential and occurs at a constant utility value. At the top, only 12%

of the wage variation is due to compensating differentials. High-paid workers face im-

portant utility differences between employers and notable wage dynamics within jobs,

resulting from the offer-counteroffer mechanism.

We next decompose the variance between-workers into the within-firm and between-

firm variances:

V ar(E[logw|x])︸ ︷︷ ︸
between worker: 72%

= E[V ar(µx|y)]︸ ︷︷ ︸
within firm, between worker: 52%

+ V ar(E[µx|y])︸ ︷︷ ︸
between firm, sorting: 20%

. (17)

The first term of equation (17), E[V ar(µx|y)], captures the average within-firm variance

of average worker values. This reflects the fact that even when all firms are identical

and pay identical wages, they will hire a distribution of workers, each of whom has a

different average market wage. The second term, V ar(E[µx|y]), represents the between
firm variance in wages, net of firm-specific pay policies. This term is the contribution

attributable to the fact that different firms hire workers with different average market

values. This highlights that firms do differ from eachother and have differing worker

compositions, directly reflecting the sorting of workers across firms.

We summarize the decomposition in Table 1. Most of the wage variance arises

from differences among workers within firms, accounting for 52% of the overall wage

variation. The sorting of workers to firms accounts for another 20% of the overall
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Table 1: Structural variance decomposition of log wages

Total variance of log wages 0.1423

Between worker

Within firm

Sorting effect 20.47%Between firm

Worker effects 51.85%

Within worker

Within R Rosen compensating differential 13.83%

Between R

Between firm Mortensen search friction 3.03%

Within firm PVR search friction 10.82%

Note: While the model wage equation is not linear in worker and firm types, the variance decompo-

sition we report is exact. An alternative to this decomposition would be to report the measures of

worker-, firm heterogeneity and sorting that arise from a two way best linear predictor decomposition

in the spirit of AKM. Applying AKM to model-simulated data, we find that the shares of wage disper-

sion are as follows: worker fixed effect 50%, firm fixed effect 10%, covariance 20%, nonlinearities 1.4%,

and a residual of 19%. While not directly comparable to our decomposition, the shares attributable

to worker heterogeneity and sorting (covariance) are strikingly similar. See Online Appendix Table 4.

variance. The remaining variance occurs within the worker type and can be split as

follows: 14% is due to compensating differentials at a fixed utility level, 3% results

from different firms offering different values to the same workers, and the remaining

11% stems from sequential auctions. The last two represent the combined effect of

market frictions, indicating that search frictions account for 14% of wage variation for

a typical worker; however, this share varies substantially between worker types.

Contributions to the dynamics of sorting The sorting pattern observed in Figure

1.b is generated by a combination of the match specific production function and the

match specific disutility of labor. To illustrate the effect of each of these forces, we

conduct the following model experiment. For each worker type x, we start with workers

uniformly allocated across firm types. Next, we simulate forward and follow these

workers as they converge to the steady state. Define logwy as the mean wage in a type

y firm, and logwx,y as the mean wage in an x, y match, both calculated in the steady

state. In Figure 5 we plot Et[logwy|x], Et[logwx,y|x], Et[cx,y|x], and Et[log fx,y|x] for
the first 10 years of the simulation. At each period of the simulation, expectations
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Figure 5: Reallocation dynamics for workers starting at randomly drawn firms.
Note: The lines correspond to worker types 1, 2, 3 , 4, and 5.

are formed based on the current distribution of workers across firms, beginning with

a uniform distribution in period 0 and approaching the steady state distribution ℓ1x,y

after 10 years. All series are normalized against period 0.

The dynamic sorting is clearly illustrated in panel (a), where we observe that high

type workers systematically reallocate to firms with higher mean wages, while low

type workers systematically reallocate to firms paying the lowest mean wages. In

panel (b), we observe that the same pattern holds for the match-specific mean wages;

however, these changes are muted because the firm component of wages is dominated

by the worker specific and sorting components. In panel (c), we see that while all

worker types reallocate toward firms with a lower type-specific disutility of labor, this

is particularly important for the lowest worker type. Finally, in panel (d), we observe

that, with the exception of the lowest type, all other worker types reallocate toward

higher productivity matches. The desire to reduce match disutility is particularly

strong for the lowest worker type, even leading them to reallocate to firms with lower

match productivity.
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Figure 6: Event Study plot.
Notes: Panel (a) reproduces the event study plot from Card et al. (2013) using model simulated data.
It plots yearly earnings before and after a move for different firms, grouped by quartiles of earnings.
Lines are labeled by origin and destination quartile of the firm. For example, “−♦ − 41” plots the
mean log wage of workers who move from a firm in quartile 4 to a firm in quartile 1 at period 0. Panel
(b) shows the fit of the model for annual earnings before and after a move for all pairs of model firm
types.

The quantitative role of the preference shock An important part of our frame-

work arises from the introduction of the preference shock. To quantify its role, we

conducted two simple exercises. First, using the model, we find that for 81% of the

meetings between employed workers and poaching firms, the mobility result would re-

main the same if the preference shock were zero. Second, to evaluate the importance

of the preference shocks for wage variation, we simulate the model, replacing each pref-

erence shock with zero (the mean for outside offers). This simulation produces wages

that are solely determined by worker type, current firm type, and poaching firm type,

rather than by a combination of types and the preference shock. In this counterfactual,

focusing on employed workers who have received at least one offer, the wage variance

decreases by 1% relative to the baseline log wage variance.11 In summary, the model

attributes 19% of job-to-job moves and 1% of log wage variation to the preference

shock.

Empirical regularities through the lens of the model. We use the model to

provide a structural interpretation of several empirical regularities that have been doc-

umented. We start with the shape of the job-mover event study from Card et al. (2013).

In Figure 6, we reproduce this study based on our estimated model. We simulate data

11While the total variance decreases by only 1% there is a substantial reallocation within and
between workers.
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from the model and then aggregate it to annual earnings, exactly as described in Card

et al. (2013).

We notice several important features. First, as typically documented, we also find

that the movers from the top quartile to the bottom quartile experience an earnings loss

that is not alleviated in the period following the move. Sequential contracting provides

a rationale for why workers might accept a wage cut when moving, expecting that

they will recover later through outside offers. In our model, however, compensating

differentials arising from the cx,y function can generate moves to higher value firms

that actually pay permanently lower wages. As seen in Figure 4, the compensating

differentials account for approximately half of the overall variance in wages within

worker types. Similarly, the movers from the bottom quartile to the top experience

earnings gains that remain remarkably consistent in the following period. In panel (b),

we plot the model fit to the data for annual earnings before and after a move between

all pairs of firm types.

In the canonical AKM specification, log wages are assumed to be additively sepa-

rable into a worker effect and a firm effect. BLM provides a specification that allows

for nonlinearities and finds the log-additive specification to be a good approximation,

as confirmed here in Figure 1.a. Additionally we find that there is significant sorting

of high type workers into high type jobs (Figure 1.b). W also find that when making

job-to-job transitions, high type workers tend to move to better paying firms, while

low type workers tend to move to lower paying firms (Figure 1.i). Without compen-

sating differentials, reconciling these three patterns would be difficult. However, the

surplus represents a combination of productivity and amenity. This means that the

model can rationalize both the wages and the surplus by incorporating both fx,y and

c̃x,y. The combination of log-additive wages and strong sorting results in estimated

dis-amenities of work that increase across firm types for low type workers, generating

positive sorting.

Recently, Di Addario, Kline, Saggio, and Sølvsten (2023) augmented the AKM

specification to allow for an effect of the previous job on the current wage. They find

that the firm where a worker was employed prior to a move does not significantly affect

the wage after the move. At face value, this suggests that sequential contracting may

not play a significant role in wage determination. An important aspect of a model like

ours, in which sorting is modeled structurally, is that the shape of the surplus leads to

heterogeneous effects of previous firms on different workers. This will tend to muddle

the average effect of the previous firm. Indeed, when we estimate the linear additive
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formulation on data simulated from our model, aggregated as in Di Addario et al.

(2023), we also find little effect of the previous employer on the wage immediately

following a move. This is despite the fact that, in the model, contracts are indeed

determined with reference to the previous employer. In Online Appendix Table 5, we

present this decomposition, showing that the previous firm type explains less than half

a percent of the variance in log wages following a move.

Separation and hiring elasticities In a dynamic model with labor flows, it is

natural to compute separation and hiring elasticities. In the canonical wage posting

model of Burdett and Mortensen (1998), firms choose a fixed wage policy that directly

affects hiring and separation rates. In the current model, firms make state contingent

offers and counteroffers and do not have a fixed wage. We can construct wage elasticities

by making small adjustments to the firm’s recruiting and retention policies, assuming

that an individual firm bids B = (1 −∆)Sx,y when competing for workers. All other

firms continue to bid Sx,y′ , allowing us to directly express how this deviation affects

both hiring and separation probabilities for each pair x, y:

hx,y(B) =
λ0L0

V

ℓ0x
L0

G0(B) +
∑
y′

λ1L1

V

ℓ1x,y
L1

G1(B − Sxy′),

qx,y(B) = δx,y + (1− δx,y)λ
1
∑
y′

vy′

V
G1(Sxy′ −B).

From here, we want to compute an elasticity with respect to wages. We use the average

wage paid by firm y to worker x in the cross-section under policy B = (1 − ∆)Sx,y.

The change in the surplus offer generates changes in average wages, hiring probabilities,

and separation probabilities compared to bidding Sx,y. From these induced changes, we

construct elasticities with respect to the wage. The resulting elasticities for each firm

type, as well as the average, are reported in Table 2 using ∆ = 0.05. Hiring elasticities

range from 2.8 to 5.1, with an average of 3.6, while separation elasticities range from

-5.8 to -1.7, with an average of -3.8.

In the second to last row, we compute the size elasticity for a job, which is the

filling rate. It is interesting to note that, in this environment, the relationship between

the separation, hiring, and size elasticities is not the same as in Burdett and Mortensen

(1998). This is due to the assumption that firms have a fixed capacity, where the job

is either vacant or filled. We obtain a different expression from the typical εn,w =

εh,w − εq,w:

εn,w =
q

h+ q

(
εh,w − εq,w

)
,
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Table 2: Separation, hire and employment elasticities

Firms 1 2 3 4 5 6 7 8 9 10 all

Hiring probability 0.05 0.08 0.08 0.11 0.09 0.11 0.10 0.05 0.03 0.02 0.07
Separation probability 0.10 0.06 0.06 0.04 0.06 0.03 0.04 0.05 0.06 0.05 0.05
Employment probability 0.31 0.58 0.59 0.75 0.61 0.78 0.71 0.50 0.30 0.28 0.54

Hire elasticity 3.9 3.6 3.6 2.9 2.8 2.8 3.1 5.1 4.2 3.8 3.6
Separation elasticity -1.7 -3.2 -3.3 -4.5 -3.1 -5.8 -4.6 -4.4 -2.8 -4.1 -3.8
Employment elasticity 3.6 3.0 3.0 2.0 2.3 2.0 2.5 4.8 5.1 5.5 3.5
Output elasticity 3.7 3.1 3.0 2.0 2.5 2.1 2.6 5.2 5.5 5.9 3.7

Notes: Elasticities are calculated using the wage and transition rate changes generated by simulating
firms who bid B = 0.95 × Sx,y rather than the equilibrium B = Sx,y when competing for workers.
For a model with fixed capacity we have n = h/(h+ q), where n is share of filled jobs, h is the hiring
rate and q is the separation rate. The employment elasticity is εn,w = q

h+q (εh,w − εq,w). Employment
and output elasticity are very close since the experiment involves little change in composition.

where q and h represent the separation rate and the hiring rate. See Appendix B.7 for

details.

We want to put this in the context of the literature on separation elasticities. We

think the most comparable estimates are from Bassier et al. (2022). Among the several

specifications, we can focus on two estimates that we can relate to our model. First,

they report an elasticity of separations with respect to the average firm wage of −0.282

in the first column of Table 1. The same regression in the cross-section generated by

our model produces a very similar separation elasticity of −0.20. When using the firm

premium, their estimate increases to around −1.3. In the working paper version, they

also report an estimate that classifies firms first, where the estimate approaches −2.

The same cross-firm regression of log separation on log-wage premium in our case gives

an elasticity of −3.4, which is higher. Finally, controlling for compensating differentials

across firms, our structural estimate of the average elasticity of separation comes to

−3.8. This magnitude is at the upper end of the reported results.

The size elasticities, on the other hand, are on the lower end but well within the

usual range of reported values at 3.5. It is key to apply the formula derived for the

capacity constrained model, as simply doubling the separation elasticity would produce

a very large size elasticity.

6 Conclusion
In this paper, we develop an equilibrium model of the labor market with heterogeneous

workers and firm types, type-specific production and disutilities/amenities, mobility

preference shocks, and optimal contracting. We show that the model is nonparametri-

cally identified from a short panel of matched employer-employee data. We find that
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for the lowest type workers, compensating differentials account for 67% of the within-

worker wage variation, but only 12% for the highest type of worker. Finally, we use

the structural model to interpret several empirical regularities that, in the absence of

the model, are difficult to reconcile.

The model can be used to conduct counterfactual policy experiments and assess

the efficiency and distributional effects of, for example, changing the progressivity of

taxes, earned income tax credits, or minimum wages. Policy changes that affect the

relative value of wages and amenities will directly influence how workers value different

jobs and affect mobility patterns.
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A Appendix

A.1 Proof of Theorem 1: The optimal contract
In all the following, the outside options W 0,Π0 are given. All dependence on (x,y)

is suppressed for notational clarity. We will consider worker values on a compact

set, as a firm should never offer more than the present value of output. We define

S = [0,maxxy fx,y/r]. We also define the control spaces, that is, R1 ∈ L∞(S × R) and
B ∈ L∞(R). R0 ∈ S and w ∈ [w, w̄], supposed large enough not to bind in firm choices.

Finally, we give the firm the option to fire the worker by choosing δ̃ ∈ [δ, 1], which is

only useful away from the optimal solution (which will always choose δ̃ = δ). We can

define the following operator T that maps Π1(R) to Π̂1(R) = T [Π1](R) as:

Π̂1(R) = sup
{w,R0,R1,B,δ̃}

{
f − w +

δ̃

1 + r
Π0 +

(1− δ̃)(1− λ1)

1 + r
Π1(R0)+ (18)

(1−δ̃)λ1

1 + r

∫∫ [
1{B(ξ) ≥ B′+ + ξ}Π1(R1(B

′, ξ)) + 1{B(ξ) < B′+ + ξ}Π0
]
dF (B′|ξ) dG1(ξ)

}
,

subject to the promise keeping constraint,

R = u(w)−c− r

1 + r
W 0+

(1− λ1)(1− δ̃)

1 + r
R0+

(1− δ̃)λ1

1 + r

∫∫ [
1{B(ξ) ≥ B′+ + ξ }R1(B

′, ξ)

+ 1{B(ξ) < B′+ + ξ}max {B(ξ), ξ}
]
dF (B′|ξ) dG1(ξ), (19)

and tomorrow’s participation constraints given poaching and following the mechanism’s

outcome. That is, whenever B(ξ) ≥ B′+ + ξ, R1(B
′, ξ) ≥ B′+ + ξ. Moreover, it must

hold that Π1(R0),Π
1(R1) ≥ Π0, and R0 ≥ 0.
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Lemma A.1. Assuming that u′(w) is bounded below by u′, the change in T [Π1] is

bounded by − 1
u′ .

Proof. Consider two values R and R′ > R and their respective strategies. We use all

the elements of the strategy at R′ but change the wage so that the worker receives

a value of R. This implies a strictly lower wage, and provides a lower bound on the

expected profit of the firm at R, which is strictly larger than Π̂1(R). Hence Π̂1 is

strictly decreasing: Π̂1(R′)− Π̂1(R) < −R′−R
u′ .

Lemma A.2. Assume Π1 is strictly decreasing and Π1(0) > Π0. Define Π1(S) = Π0.

Then, for all ξ, B(ξ) = S is a non-dominated credible strategy.

Proof. Take a feasible policy, θ = {w, δ̃, R0, R1, B} with B(ξ0) ̸= S for some ξ = ξ0.

First, let’s rule out B(ξ0) > S. Credibility imposes that the bid is feasible even when

the incumbent looses. This directly imposes B(ξ0) ≤ S.

We then show that B(ξ0) < S is weakly dominated by a strategy that chooses

B(ξ0) = S. Construct the alternative policy θ̂ = {ŵ, ˆ̃δ, R̂0, R̂1, B̂} that is identical to

θ for all ξ and B′, except when ξ = ξ0 in which case B̂(ξ0) = S and R̂1(B
′, ξ0) =

max{B′+ + ξ0, R1(B
′, ξ0)}. Let’s look at the different cases for B′+ + ξ0 and show that

it is feasible and at least as good as θ.

Case 1: when B′+ + ξ0 ≤ B(ξ0), the incumbent wins the auction in both θ and θ̂

since B̂(ξ0) > B(ξ0). In this case R1 and R̂1 are the same. The worker and the firm

are indifferent between the two strategies.

Case 2: when B′+ + ξ0 ≥ B̂(ξ0) the incumbent looses the auction in both θ and θ̂

and get Π0. The worker moves to the poacher which must deliver at least as much as

the bids. The bid is larger in ˆtheta than under θ, hence he would prefer ˆtheta.

Case 3: Suppose that B(ξ0) < B′++ ξ0 ≤ S. Under strategy θ, the incumbent loses

and receives Π0 and the worker receives max {B(ξ0), ξ0}. Under strategy θ̂, B̂(ξ0) =

S ≥ B′+ + ξ0. The incumbent wins the auction and pays B′+ + ξ0 to the worker. The

worker prefers strategy θ̂, as B′++ξ0 ≥ max {B(ξ0), ξ0}. The firm also prefers strategy

θ̂, as B′+ + ξ0 ≤ S implies Π1(B′+ + ξ0) ≥ Π1(S) ≥ Π0 (since Π1 is decreasing).

Overall, θ̂ is weakly preferred by the worker, and hence is feasible since θ is feasible.

At the same time, it is weakly preferred by the firm. For any feasible strategy with

B(ξ0) < S, there is a weakly preferred strategy B(ξ0) = S. We conclude that B(ξ0) = S

is non dominated.

Lemma A.3. If Π1(R) is γ(1 − β) strongly concave (and hence almost everywhere

differentiable) and weakly decreasing, and g(v) = −u−1(v) is γ-strongly concave, then
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Π̂ = T [Π1] is γ(1− β) strongly concave.

Proof. Using v = u(w) and g(v) = −u−1(v), we have assumed that g is γ-strongly

concave. We note that the solution is γ-strongly concave when δ̃=1, so we focus our

attention on the substantive part of δ̃=δ. The constraints in the Lagrangian are

µ
(
v − c− r

1 + r
W 0 +

(1− λ1)(1− δ)

1 + r
R0 +

(1− δ)λ1

1 + r

∫∫ [
1
{
S ≥ B′+ + ξ

}
R1(B

′, ξ)

+ 1
{
S < B′+ + ξ

}
max {S, ξ} dF (B′|ξ) dG1(ξ)−R

)
+

(1− δ)λ1

1 + r

∫∫
µ1(B

′, ξ)1
{
S ≥ B′+ + ξ

} (
R1(B

′, ξ)−B′+ − ξ
)
dF (B′|ξ) dG1(ξ)

Where µ1(B
′, ξ) ≥ 0 is the multiplier for R1(B

′, ξ)−B′+− ξ ≥ 0 and we abstract from

the additional simpler bound constraints on R1 and R0. We extract the FOCs:

g′(v) + µ = 0, Π1′(R0) + µ = 0,(
µ1(B

′, ξ) + Π1′(R1(B
′, ξ)) + µ

)
1
{
S ≥ B′+ + ξ

}
= 0.

Since R1 is irrelevant whenever 1 {S ≥ B′+ + ξ} = 0 we impose that it takes the value

S in such case and otherwise we have:

µ1(B
′, ξ) + Π1′(R1(B

′, ξ)) + µ = 0.

We assumed that Π1 is weakly decreasing, which implies that −µ is also weakly decreas-

ing in R from the F.O.C. on R0. This tells us that R1(B
′, ξ) is at least weakly increasing

in R (since it is constant when the constraint binds or Π1′(R1(B
′, ξ)) = −µ when it

does not, and Π1 is strictly concave). This implies that increasing R will make the

constraint R1(B
′, ξ)−B′+− ξ ≥ 0 more slack, which in turn means that the multiplier

µ1(B
′, ξ) will decrease in R. Using finite difference notation ∆Rf(R) = f(R′)− f(R),

we get:

−∆Rµ = ∆RΠ
1′(R1(B

′, ξ)) + ∆Rµ1(B
′, ξ)︸ ︷︷ ︸

≤0

≤ ∆RΠ
1′(R1(B

′, ξ))

≤ γ(1− β)∆RR1(B
′, ξ)

similary, since Π1 is (1− β)γ-strongly convave, and g(·) is γ-strongly concave, we have

by definition that −∆Rµ = Π1′(∆RR0) ≤ γ(1− β)∆RR0
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and

−∆Rµ = ∆Rg(v) ≤ γ∆Rv

−γ∆Rv ≤ ∆Rµ.

We then turn to the PK constraint, we have

∆RR = ∆Rv +
(1− λ1)(1− δ)

1 + r
∆RR0

+
(1− δ)λ1

1 + r

∫∫ [
1
{
S ≥ B′+ + ξ

}
∆RR1(B

′, ξ) dF (B′|ξ) dG1(ξ),

We multiply by γ(1− β) and use that the different 1/(1 + r) terms sum to some p < 1

together with the derived inequalities to get:

pβ(−∆Rµ) + γ (1− β)∆Rv ≤ γ (1− β)∆RR

pβ(−∆Rµ) ≤ γ (1− β)∆RR + (1− β)∆Rµ

−∆Rµ (βp+ 1− β) ≤ γ (1− β)∆RR

−∆Rµβ(p− 1)︸ ︷︷ ︸
≥0

−∆Rµ ≤ γ (1− β)∆RR

−∆Rµ ≤ γ (1− β)∆RR

We then go to the envelop condition that gives us

Π̂(∆RR) = −∆Rµ ≤ γ (1− β)∆RR

which establishes that Π̂(R) is γ (1− β)-strongly concave.

Lemma A.4. The operator T maps L∞(S) into L∞(S).

Proof. Proving this only requires showing that the image through the operator is

bounded. The expression under the sup operator is directly bounded by

T [Π1](R) ≤ f − w +
1

1 + r
max{||Π1||∞,Π0}.

and so it is bounded above.

Regarding the lower bound, we need to show that there is a feasible strategy that

delivers a bounded value. We consider the strategy that fires the worker while choosing

the wage to deliver exactly R: δ̃ = 1 and u(w) = R+ c+ r
1+r

W 0. This is feasible since

none of the constraints on promises or bids must hold. This provides a lower bound

for
T [Π1](R) ≥ f − u−1(S̄ + c+

r

1 + r
W 0) +

1

1 + r
Π0.

This implies that T [Π1], the image of Π1, is bounded, and therefore the image is in
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L∞(S).

Lemma A.5. T is a contraction on L∞(S).

Proof. We prove Blackwell’s sufficient conditions. We start with monotonicity. Let

Π1 ≤ Π1
∗ be two bounded functions. Making Π1 larger relaxes the constraint on the

space of strategies since it only appears to impose that promises need to be such that

Π(R) ≥ Π0. Therefore, any strategy feasible under Π1 will be feasible under Π1
∗. And

any sequence of such strategies leading to the sup will also be feasible. Second, Π1

enters linearly and positively in the expression under the sup in (18). The sup under

Π1
∗ will then be at least as large as under Π1, demonstrating monotonicity.

Next, we turn to discounting. Let α ≥ 0 and Π1
∗(R) = Π1(R) + α. Again, this

relaxes the constraints, so any feasible strategy under Π1 will be feasible under Π1+α.

We start with the optimal strategy at Π1 + α (or the sequence of strategies leading

to the sup) and collect the terms in the expression under the sup that contain the

constant α. This reveals the expression under the sup evaluated with Π1 without α, at

the optimal strategy (or the sequence of strategies) for Π1 +α, plus the constant 1−δ̃
1+r

α

. By definition of the sup, it must be less than T [Π1]. Given that δ̃ ≥ δ, this gives us

that:

T [Π1 + α](R) ≤ T [Π1](R) +
1− δ

1 + r
α.

It follows that T is a contraction with modulus β = 1−δ
1+r

.

It follows that there exists a unique solution Π1 to the firm problem in L∞(S).

Lemma A.6. The fixed point solution T (Π1) = Π1 exists, is unique, continuous,

strictly concave, and strictly decreasing.

Proof. We have shown that the operator is a contraction, and we have shown that it

maps strongly concave functions into strongly concave functions. The fixed point is

then also strongly concave, and hence strictly concave. The uniqueness of the solution

follows from the contraction property. Strictly decreasing follows from Lemma A.1.

Continuity follows from concavity.

Lemma A.7. We finally show that:

1. When the incumbent keeps the worker, the continuation values are given by

R1(B
′, ξ) = max {R,B′+ + ξ)} and R0 = R.

2. In the interior region, we have Π1′(R) = − 1
u′(w(R))

, which implies that the wage

next period remains as in the current period whenever R1(B
′, ξ) = R.
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Proof. We write the Lagrangian for the remaining arguments. Specifically:

L = f − w +
δ̃

1 + r
Π0 +

(1− δ̃)(1− λ1)

1 + r
Π1(R0)

− µ

(
u(w)− c− r

1 + r
W 0 +

(1− λ1)(1− δ̃)

1 + r
R0 −R

)

+
(1− δ̃)λ1

1 + r

∫∫
H(B′, ξ, R1(B

′, ξ), µ, µ̄(B′, ξ), µ(B′, ξ)) dF (B′|ξ) dG1(ξ)

where H is function of 6 scalars:

H(B′, ξ, R1, µ, µ̄, µ) = 1{S ≥ B′+ + ξ}Π1(R1)+1{S < B′+ + ξ}Π0−µ1{S ≥ B′+ + ξ }R1

−µ1{S < B′+ + ξ}max {S, ξ}+1{S ≥ B′+ + ξ}
(
µ · (R1 −B′+ − ξ) + µ̄ · (R1 − S)

)
We introduced the two sets of constraints that whenever B′+ + ξ ≤ S we must im-

pose that B′+ + ξ ≤ R1(B
′, ξ) ≤ S. The lower bound is captured by multiplier

µ(B′, ξ) while the upper bound is captured by µ̄(B′, ξ). We scaled both multipliers by
(1−δ̃)λ1

1+r
f(B′|ξ)g1(ξ) to make things readable. Finally, let µ be the Lagrange multiplier

of the promise-keeping constraint. We ignore R1, R0 ≥ 0 and verify it holds for the

optmial choice. The first-order conditions for w and R0 are

−1− µu′(w) = 0 and Π1′(R0)− µ = 0.

To maximize with respect to R1(B
′, ξ) we apply a particular case of the Euler-Lagrange

theorem, one that does not require the derivative of the control and states that we can

simply take a derivative of the H function. It is also equivalent to directly checking

the small deviations of the R1(B
′, ξ) as in a simepl case of a Frechet derivative. We

get the following conditions:

1{S ≥ B′+ + ξ}
(
Π1′(R1(B

′, ξ))− µ+ µ̄B′,ξ + µ(B′, ξ)
)
= 0,

First, whenever the firm loses the auction, then the promised value is not relevant.

When the firm wins the auction, if the lower bound of the value is binding, then

R1(B
′, ξ) = B′+ + ξ, if the upper bound is binding, then R1(B

′, ξ) = S. In the interior

region, we get that
Π1′(R1(B

′, ξ)) = µ = Π1′(R0),

which by strict concavity gives R1(B
′, ξ) = R0. Since we also have R0 ≤ S, we get

R1(B
′, ξ) = max {R0, B

′+ + ξ}. When B′++ξ > S, we can assume that R1(B
′, ξ) = S.

The envelope condition gives us Π1′(R) = µ = Π′(R0) which by the strict concavity

of Π1 tells us that R0 = R. Together with the first-order condition for the wage, it also

tells us that Π1′(R) = − 1
u′(w(R))

.
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A.2 Identification Step 3

A.2.1 Distributions of transition wages

Lemma A.8. We show that the wage after a move for a worker x moving from a firm

y to a firm y′ has support in [wx,y′(0), wx,y′(Sx,y′)] with CDF given by:

FJJ(w|x, y, y′) =
G

1
(Sx,y −Rx,y′(w))

G
1
(Sx,y − Sx,y′)

(20)

Proof. We use the result from the model that the value a worker receives after a move

is given by R′ = max {Sx,y − ξ, 0}, and the worker collects ξ in addition. This implies

that the wage is given by wx,y′(R
′). We treat the cases R′ = 0 and R′ > 0 separately.

Because the move has occurred, the distribution of ξ is conditional on Sx,y′ + ξ > Sx,y,

and therefore the CDF of starting wages is G
1
(ξ)/G

1
(Sx,y − Sx,y′).

We know that wx,y′(R
′) is monotone in R′, and therefore the lowest wage offered

will be wx,y′(0). We have R′ = 0 iff ξ > S. This then implies that there is a mass point

at wx,y′(0)

FJJ(wx,y′(0)|x, y, y′) = P[ξ > Sx,y] = G
1
(Sx,y)/G

1
(Sx,y − Sx,y′).

When ξ < S, we have R′ = Sx,y − ξ and for any wage w ∈]wx,y′(0), wx,y′(Sx,y′)[, the

CDF following a job-to-job transition is given by

FJJ(w|x, y, y′) = P[wt+1 ≤ w|x, yt = y, yt+1 = y′,mt = JJ]

= P[wx,y′(R
′) ≤ w|x, yt = y, yt+1 = y′,mt = JJ]

= P[wx,y′(Sx,y − ξ) ≤ w|Sx,y′ + ξ > Sx,y]

= G
1
(Sx,y −Rx,y′(w))/G

1
(Sx,y − Sx,y′).

Therefore, we have for all w ∈ [wx,y′(0), wx,y′(Sx,y′)[ that FJJ(w|x, y, y′) = G
1
(Sx,y −

Rx,y′(w))/G
1
(Sx,y − Sx,y′).

Lemma A.9. We show that FUE(w|x, y′) = G
0
(−Rx,y′(w))/G0(−Sx,y′).

FUE(w|x, y′) = P[wt+1 ≤ w|x, yt+1 = y′,mt = UE]

= P[wx,y′(−ξ) ≤ w|ξ > −Sx,y′ ]

= G
0
(−Rx,y′(w))/G0(−Sx,y′).

A.2.2 Proof of Lemma 3

We can then prove Lemma 3. We start with the result from Lemma A.8 which gives

that
FJJ(w|x, y, y′) = G

1
(Sx,y −Rx,y′(w))/G

1
(Sx,y − Sx,y′).
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Define z = Sx,y −Rx,y′(w) and replace w = wx,y′(Sx,y − z) to get

FJJ

(
wx,y′(Sx,y − z)|x, y, y′

)
= G

1
(z)/G

1
(Sx,y − Sx,y′),

for all z ∈ [Sx,y − Sx,y′ , Sx,y].

First, consider within-group JJ-transitions from yt = y to yt+1 = y. Such a move

requires a draw 0 < ξ ≤ Sx,y. Under the assumption that G1(0) = 1/2, we therefore

get:
FJJ(w(x, y, S − z)|x, y, y) = 2G1(z).

Hence, G1(z) is identified on [0, S], where S = maxSx,y.

A.2.3 Proof of Lemma 4

We proceed in multiple steps. We start by considering the probability of a move

between two firms, which is given by

pJJ(y
′|x, y) = δx,yλ

1vy′

V
G1(Sx,y − Sx,y′),

We then consider the following ratio

pJJ(y
′|x, y)

pJJ(y′′|x, y)
=

vy′

vy′′

G1(Sx,y − Sx,y′)

G1(Sx,y − Sx,y′′)

where the ratio of G1() is identified from Lemma 3 and knowledge of Sx,y from Lemma

2. The left-hand side of the equation is also known. This shows us that vy′/vy′′ is known

for all pairs of viable matches. Provided sufficient overlap between matches (that is,

there is a path between all y′ and y′′) we identify all ratios. Since
∑Y

y=1 vy = V , this

means that we have also identified vy/V for all y.

Knowing vy′/V , the expression for pJJ identifies δx,yλ
1. We then move to expressing

the probability of separation to unemployment:

P[mt = EU|x, yt = y] = δx,y + δx,yλ
1

(
Y∑

y′=1

(1− ϕx,y′)
vy′

V

)
G

1
(Sx,y),

where the left hand side if known from Step 1. The right-hand term of the sum is

also known since ϕx,y, G1 and vy′/V are known, and δx,yλ
1 is known from the previous

paragraph. This gives us that δx,y is identified. We also see that λ1 is identified by

going back to the expression for pJJ.

A.2.4 Proof of Lemma 5

We start by writing down the probability for transitioning from unemployment into

being employed in firm y for each worker type x:

P[yt+1 = y,mt = UE|x] = λ0
vy
V
G0(−Sx,y)
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where we know vy/V which means that λ0G0(−Sx,y) is known. We then turn to the

distribution of starting wages from unemployment from Lemma A.9 given by:

FUE(w|x, y) = G
0
(−Rx,y(w))/G0(−Sx,y).

We introduce ξ = −Rx,y(w) and use Rx,y(wx,y(−ξ)) = ξ to write

∀ξ ∈ [−Sx,y, 0] λ0G0(ξ) =
V

vy
P[yt+1=y,mt=UE|x]FUE(wx,y(−ξ)|x, y),

which identifies λ0G0(ξ) for ξ ∈ [−S̄, 0].

A.3 Proof of Lemma 6: Identification Step 4
We use equation (2) at R = Sx,y:

rΠ1
x,y(Sx,y) = rΠ0

y = (1 + r) (fx,y − wx,y(Sx,y))

where we can directly express the production function in terms of known quantities

and Π0
y in

fx,y = wx,y(Sx,y) +
r

1 + r
Π0

y. (21)

The final step is to express the present value of a vacancy where everything is known

except for the total number of vacancies V .

rVΠ0
y = λ0

X∑
x=1

∫ 0

−Sx,y

G
0
(ξ)

u′(wx,y(−ξ))
ℓ0x dξ

+ λ1
X∑

x=1

Y∑
y′=1

∫ 0

−Sx,y

G
1
(ξ + Sx,y′)

u′(wx,y(−ξ))
δx,yℓ

1
x,y′ dξ. (22)

Hence, we know Π0
y up to a scale constant V . Finally, we identify the constant V by

matching the labor share in the data, i.e. the ratio of average labor expenditure to

average revenue E[wit]/E[fxi,yj(i,t) ]. We have that

labor share = E [wit] /E
[
wxi,yj(i,t)(Sxi,yj(i,t)) +

1

V

rV

1 + r
Π0

y

]
, (23)

where VΠ0
y is known from equation (22), the labor share is observed directly, and all

other objects are also known besides V . This pins down V and, consequently, Π0
y. fx,y

is then known by equation (21).

We then focus on identifying c̃ = cx,y + bx. c̃x,y is the disutility of labor net of

amenities of an (x, y)-match plus the forgone home production. Using the equation for

the match surplus we have

c̃x,y = u(wx,y) +
δx,yλ

1

1 + r

∫ ∞

Sx,y

G
1
(ξ) dξ + [r + δx,y]Sx,y,
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where all elements besides c̃x,y are already identified. Finally, we note that knowing

V we also know vy since we identified vy/V in Lemma 4. With knowledge of vy

we identify the total mass of jobs in the economy by adding vacant and active jobs

ny =
∑X

x=1 ℓ
1
x,y + vy, which identifies ny and concludes the proof of the lemma.
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B Online Appendix – not for publication

B.1 Discussion of the Poaching Mechanism of Section 1.3
To fix ideas, consider an ascending auction for the worker’s services. Denote the firms’

reservation surpluses by S := Sx,y and S ′ := Sx,y′ . As the types are unobserved,

reservation surpluses are also private information. Intuitively, an ascending auction

should deliver the efficient outcome, and truthfulness should be a dominant strategy

for firms.

The ascending auction argument for truthfulness is as follows. First, firms should

not make offers above their reservation values S and S ′, respectively. Second, if the

incumbent bids B, then the poacher should bid B′ > B − ξ, as it knows that the

worker will receive an additional ξ when moving. If the poacher bids B′, the incumbent

should bid B ≥ B′ + ξ, as the worker will need to be compensated for the forgone ξ.

Firms continue to make alternating bids until one of them drops out. Therefore, the

incumbent retains the worker if S ≥ S ′ + ξ and pays the second price S ′ + ξ. The

poacher hires the worker if S ′ + ξ > S and pays the second price S − ξ. When moving

to the poacher, the worker receives an additional ξ and thus receives S in total. In

the event that S ′ = 0 and ξ > S, the worker can choose to leave the incumbent for

unemployment and collect ξ. It is convenient to represent the outcome of this ascending

auction as a direct mechanism that resembles the usual second-price sealed bid auction,

augmented to account for the mobility shock ξ.

B.2 Additional details for Section 2
The present value for the employed worker The value to a type-x worker em-

ployed by a type-y firm at wage w is given by

W 1
x,y(w) = u(w)− cx,y +

δx,y
1 + r

W 0
x +

δx,yλ1

1 + r

(
W 0

x +R0

)
+

δx,yλ
1

1 + r

∫∫ [
1{B(ξ) ≥ B′+ + ξ}

(
W 0

x +R1(B
′, ξ)
)

+ 1{B(ξ) < B′+ + ξ}
(
W 0

x +max {B(ξ), ξ}
) ]

dF 0(B′|x, ξ) dG1(ξ),

with S = Sx,y and S ′ = Sx,y′ . Substituting in the equilibrium R1, R0, the outcomes of

the auction mechanism, and rearranging we obtain:
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rW 1
x,y(w) = u(w)− cx,y +

δx,y
1 + r

(
W 0

x −W 1
x,y(w)

)
+

λ1δx,y
1 + r

Y∑
y′=1

[∫ Sx,y−Sx,y′

W 1
x,y(w)−W 0

x−Sx,y′

[
W 0

x + Sx,y′ + ξ −W 1
x,y(w)

]
g(ξ) dξ

+

∫ Sx,y

Sx,y−Sx,y′

[
Sx,y +W 0

x −W 1
x,y(w)

]
g(ξ) dξ

+

∫ ∞

Sx,y

[
W 0

x + ξ −W 1
x,y(w)

]
g(ξ) dξ

]
vy′

V
.

Let wx,y(R) be the wage that provides surplus R to the worker. Multiplying by (1+r),

subtracting W 1
x,y(w) and rW 0

x from both sides, and evaluating at wx,y(R), we obtain

the utility flow of the wage equation (6).

And further integrating by part the integrals with respect to ξ, we finally obtain

u(wx,y(R)) =
r + δx,y
1 + r

R +
r

1 + r
W 0

x + cx,y

− δx,yλ
1

1 + r

∫ ∞

Sx,y

G
1
(ξ) dξ − δx,yλ

1

1 + r

Y∑
y′=1

[∫ Sx,y

R

G
1
(R′ − S+

x,y′) dR
′
]
vy′

V
. (24)

The minimum wage is wx,y = wx,y(0) that produces zero surplus. The maximum wage

is wx,y = wx,y(Sx,y) that produces the maximum surplus Sx,y.

This wage equation is the value of the wage chosen by the firm given types (x, y)

and a given worker surplus R (or value W 0
x +R). First, we note that a greater promised

surplus R implies a greater wage:

(1 + r)u′(wx,y(R))
∂wx,y(R)

∂R
= r + δx,y + δx,yλ

1

Y∑
y′=1

G
1 [
R− S+

x,y′

] vy′
V

> 0. (25)

Second, for a fixed R, a greater amenity −cx,y requires a lower wage, as in Rosen’s

(1986) compensating wage differential story. Third, the worker may get an outside

offer as a result of holding this job. The wage function depends on y through cx,y, δx,y

and Sx,y, and we have

(1 + r)u′(wx,y(R))
∂wx,y(R)

∂Sx,y

= −δx,yλ
1

Y∑
y′=1

[
G1(Sx,y)−G1(Sx,y − S+

x,y′)
] vy′
V

< 0. (26)

The effect of the current reservation surplus is another compensating differential. A

greater surplus decreases the current wage required to achieve the promised value.

However, there are two effects that go in opposite directions. By increasing Sx,y we

reduce job-to-job mobility as fewer vacancies can beat the current job. This reduces
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future payoffs and increases the wage for a given R. But by increasing Sx,y we also

increase the likelihood of future wage raises (in the current job). It happens that

the former effect dominates the latter. The intuitions of the basic sequential auction

model of Postel-Vinay and Robin (2002) thus carry through to the more general setup,

perhaps in a more transparent way.

Surplus equation Substituting expression (7) for the maximum wage along with

R = Sx,y into the wage equation (6) we have

u(fx,y − r(1 + r)−1Π0
y) = cx,y +

r + δx,y
1 + r

Sx,y +
r

1 + r
W 0

x

− λ1δx,y
1 + r

Y∑
y′=1

ϕx,y′

[∫ Sx,y−Sx,y′

Sx,y−Sx,y′

[Sx,y′ + ξ − Sx,y] g(ξ) dξ

+

∫ ∞

Sx,y−Sx,y′

[max {Sx,y − ξ, 0}+ ξ − Sx,y] g(ξ) dξ

]
vy′

V
.

The first inner integral evaluates to zero. The second inner integral simplifies by

noting that when ξ < Sx,y, max {Sx,y − ξ, 0} + ξ − Sx,y = 0 and when ξ ≥ Sx,y,

max {Sx,y − ξ, 0} + ξ − Sx,y = ξ − Sx,y, so we only need to consider ξ ≥ Sx,y, which

implies that the inner integral does not depend on y′. The equation defining the surplus

then simplifies to equation (8).

Firm profit Substitution in the outcomes of the auction mechanism we can write

the firm profit as

[r + δx,y] Π
1
x,y(R) = (1 + r) [fx,y − wx,y(R)] + δx,yΠ

0
y

+ δx,yλ
1

Y∑
y′=1

[ ∫ Sx,y−S+
x,y′

R−S+
x,y′

(
Π1

x,y(S
+
x,y′ + ξ)− Π1

x,y(R)
)
dG1(ξ)

+

∫ Sx,y

Sx,y−S+
x,y′

(
Π0

y − Π1
x,y(R)

) ]
dG1(ξ)

vy′

V
. (27)

Moreover, Theorem 1 establishes that

∂Π1
x,y(R)

∂R
= − 1

u′(wx,y(R))
.

This is a simple consequence of the Envelope Theorem, which can also be obtained by

differentiating equation (27) and using equation (25).

If we define the match surplus as the maximal value of R such that Π1
x,y(R) ≥ Π0

y,
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then the profit function being decreasing, Sx,y is defined by the equality

Π1
x,y(Sx,y) = Π0

y. (28)

We can therefore also deduce firm profits from worker wages as

Π1
x,y(R) = Π0

y +

∫ Sx,y

R

dR′

u′(wx,y(R′))
. (29)

Value of a vacancy Let Jx,y(R) = Π1
x,y(R)−Π0

y be the gain for the firm of offering

a surplus R to the worker. At the equilibrium offers and counter offers the value of a

vacancy (3) becomes:

rΠ0
y = λ0

L0

V

X∑
x=1

∫ ∞

−Sx,y

Jx,y(max{−ξ, 0}) dG0(ξ)
ℓ0x
L0

+ λ1
L1

V

X∑
x=1

Y∑
y′=1

∫ ∞

Sx,y′−Sx,y

Jx,y(max{Sx,y′ − ξ, 0}) dG1(ξ)(1− δx,y′)
ℓ1x,y′

L1
.

Breaking the inner integrals into regions above and below the value of ξ at which

max{·, 0} becomes 0, we have

rΠ0
y = λ0

L0

V

X∑
x=1

ϕx,y

[
G

0
(0)Jx,y(0) +

∫ 0

−Sx,y

Jx,y(−ξ) dG0(ξ)

]
ℓ0x
L0

+ λ1
L1

V

X∑
x=1

Y∑
y′=1

ϕx,y

[
G

1
(Sx,y′)Jx,y(0)

+

∫ Sx,y′

Sx,y′−Sx,y

Jx,y(Sx,y′ − ξ) dG1(ξ)

]
(1− δx,y′)

ℓ1x,y′

L1
. (30)

Now, consider the two integrals involving ξ in turn. In the first case we have∫ 0

−Sx,y

Jx,y(−ξ) dG0(ξ) = −
[
Jx,y(−ξ)G

0
(ξ)
]0
−Sx,y

−
∫ 0

−Sx,y

∂Jx,y
∂R

(−ξ)G
0
(ξ) dξ

= −Jx,y(0)G
0
(0) +

∫ 0

−Sx,y

G
0
(ξ)

u′(wx,y(−ξ))
dξ,

where the first equality uses integration by parts and the second equality uses the fact

that we defined Jx,y(Sx,y) = 0 and that Lemma (A.7) implies that that ∂Jx,y
∂R

(R) =
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− 1
u′(wx,y(R)

. Similarly, in the second case we have∫ Sx,y′

Sx,y′−Sx,y

Jx,y(Sx,y′ − ξ) dG1(ξ)

= −
[
Jx,y(Sx,y′ − ξ)G

1
(ξ)
]Sx,y′

Sx,y′−Sx,y

−
∫ Sx,y′

Sx,y′−Sx,y

∂Jx,y
∂R

(Sx,y′ − ξ)G
1
(ξ) dξ

= −Jx,y(0)G
1
(Sx,y′) +

∫ Sx,y′

Sx,y′−Sx,y

1

u′(wx,y(Sx,y′ − ξ))
G

1
(ξ) dξ

= −Jx,y(0)G
1
(Sx,y′) +

∫ 0

−Sx,y

G
1
(ξ + Sx,y′)

u′(wx,y(−ξ))
dξ.

Substituting these two expressions into equation (30) we obtain (10), where, given the

bound of the integrals, we can remove ϕx,y.

B.3 Proof of Lemma 1: Trajectories are Markovian
We treat the different mt states separately and show that the Markov property holds

for each. When the worker is unemployed, we simply write yt = 0 and wt = ∅. Our

goal is to show

P[wt+1, yt+1,mt+1|x,wt, yt,mt,Ωt−1] = P[wt+1, yt+1,mt+1|x,wt, yt,mt]

By applying successive conditioning,

P[wt+1, yt+1,mt+1|x,wt, yt,mt,Ωt−1] = P[mt+1|wt+1, yt+1, x, wt, yt,mt,Ωt−1]

× P[wt+1|yt+1, x, wt, yt,mt,Ωt−1]× P[yt+1|x,wt, yt,mt,Ωt−1].

We proceed by showing that each of these three probabilities are independent of Ωt−1.

Mobility mt+1 It follows from the model that mobility is only a function of the

surplus and not of the wage itself.

When an unemployed worker x meets a firm y, the match is formed if and only if

0 ≤ −ξ ≤ Sx,y (remember that G0 has negative support):

P [mt+1 = UE|x, yt+1 = 0,Ωt] = λ0
Y∑

y=1

G0(−Sx,y)ϕx,y
vy
V
,

and for workers employed in yt > 0 we have (using the short-hand notations S = Sx,y

and S ′ − Sx,y′):
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mt+1 = EU if ξ > max {S, S ′ + ξ}:

P [mt+1 = EU|x, yt+1 = y, wt+1,Ωt] = δx,y + δx,yλ
1

Y∑
y′=1

[1− ϕx,y′ ]
vy′

V
×G

1
(S),

mt+1 = JJ if S ′ + ξ > max {S, ξ} or S ′ + ξ > S and S ′ > 0:

P [mt+1 = JJ|x, yt+1 = y, wt+1,Ωt] = δx,yλ
1

Y∑
y′=1

G
1
(S − S ′)ϕx,y′

vy′

V
,

mt+1 = EE if S ≥ S ′+ + ξ or there was no offer:

P [mt+1 = EE|x, yt+1 = y, wt+1,Ωt] = δx,yλ1 + δx,yλ
1

Y∑
y′=1

G1(S − S ′+)
vy′

V
.

Therefore P[mt+1|x,wt, yt,mt, wt+1, yt+1,Ωt−1] = P[mt+1|x,wt, yt,mt, wt+1, yt+1].

Wage wt+1 The next step is to examine the law of motion of wages. Whenever

unemployed the wage is missing (wt = ∅), so we do not need to consider cases mt ∈
{UU,EU} for the law of motion of the wage. We then need to look at UE, EE, and

JJ. In each case, we seek an expression for P [wt+1|x, yt, wt, yt+1,mt,Ωt−1].

When mt = UE, we know that, conditional on moving, the offer is set to deliver

a surplus −ξ to the worker, where ξ is a draw from G0, truncated below by −Sx,yt+1 .

The wage is set through the injective function wx,y(R) and so:

P [wt+1 ≤ w′|x,wt = w, yt = 0, yt+1 = y,mt = UE,Ωt−1]

= P [wx,y(−ξ) ≤ w′|ξ ≥ −Sx,y] := FUE(w
′|x, y).

Similarly when mt = JJ, we know that conditional on moving from yt = y to yt+1 = y′

the offer is set to deliver a surplus (Sx,y − ξ)+ to the worker, where ξ is a draw from

G1, truncated below by Sx,y − Sx,y′ :

P [wt+1 ≤ w′|x,wt = w, yt = y, yt+1 = y′,mt = JJ,Ωt−1]

= P
[
wx,y′((Sx,y − ξ)+) ≤ w′ | ξ ≥ Sx,y − Sx,y′

]
:= FJJ(w

′|x, y, y′).

Here, we note that in addition it is independent of the previous wage.

We then consider our final case ofmt = EE. In this case, the wage only changes if an

outside offer comes in and is above the surplus the worker is getting from their current

wage. We know that the surplus the worker receives at wage w from a firm y is equal to

0 ≤ Rx,y(w) ≤ Sx,y. The joint probability of mt = EE and wt+1 ≤ w′ ∈ [w,wx,y(Sx,y)]

for a worker currently employed at a firm yt = y with a wage wt = w is the probability
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of drawing an offer yt+1 = y′ and a ξ such that S+
x,y′ + ξ ≤ Rx,y(w

′):

P [mt = EE, wt+1 ≤ w′|x,wt = w, yt = y,Ωt−1]

= δx,y(1− λ1) + δx,yλ
1

Y∑
y′=1

G1
[
Rx,y(w

′)− S+
x,y′

] vy′
V

.

Hence

P [wt+1 ≤ w′|x,wt, yt, yt+1,mt = EE,Ωt−1]

= 1 {w′ ≥ w} P [mt = EE, wt+1 ≤ w′|x,wt = w, yt = y,Ωt−1]

P [mt = EE|x, yt]

= 1 {w′ ≥ w}
1− λ1

∑Y
y′=1G

1 [
Rx,y(w

′)− S+
x,y′

] vy′

V

1− λ1
∑Y

y′=1G
1 [
Sx,y − S+

x,y′

] vy′

V

:= FEE(w
′|x, y, w).

This shows that P[wt+1|x,wt, yt, yt+1,mt=EE,Ωt−1 ] = P[wt+1|x,wt, yt, yt+1,mt=EE ].

Firm yt+1 Next we turn to yt+1. When mt = EU, yt+1 = 0. When mt = EE,

yt+1 = yt. When mt = UE, P [yt+1 = y′|x,mt = UE,Ωt−1] ∝ vy′

V
G

0
(−Sx,y′). Finally,

when mt = JJ, we get

P [yt+1 = y′|x,mt = JJ, yt = y, wt,Ωt−1] ∝ δx,yλ
1vy′

V
ϕx,y′G1(Sx,y − Sx,y′).

This establishes P[yt+1|x,wt, yt,mt,Ωt−1] = P[yt+1|x,wt, yt,mt] and concludes the proof

for the Markov property of the model.

B.4 Identification Step 1
We adapt the proof of Bonhomme et al. (2019) to our context of Markovian wages on

the job. For simplification, we consider the case with discrete wage outcomes but refer

to the original paper for a proof with wages belonging to a continuum.

Throughout the proof, we assume that we have a discretization of the wage where

the assumptions hold. This discretization is simply a list of support points wp for

p ∈ 1, ..., nw. Let also q ∈ {1, ..., nx} denote the values for worker types x.

Lemma B.1. We consider 2 firm types y, y′ and one middle wage w2. The distributions

P[w1|x, y1,m1 = JJ,m2 = EE],P[w3|x,w2, y2,m1 = JJ,m2 = EE],

P[x,w2|y1, y2,m1 = JJ,m2 = EE],

are identified from P[w1, w2, w3|y1, y2,m1 = JJ,m2 = EE] for all y1, y2 ∈ {y, y′} under

the assumptions that for any y1, y2 ∈ {y, y′},
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1. Wages are Markovian within job spells:

P[w3|x,w2, w1, y1, y2,m1 = JJ,m2 = EE] = P[w3|x,w2, y1, y2,m1 = JJ,m2 = EE].

2. Wages after a move do not depend on wages before the move:

P[w2|x, y1, y2, w1,m1 = JJ,m2 = EE] = P[w2|x, y1, y2,m1 = JJ,m2 = EE].

3. The distributions P[w1|x, y1,m1 = JJ,m2 = EE] and P[w3|x,w2, y1,m1 = JJ,m2 =

EE] are linearly independent with respect to x for all y1, w2 (that is, the CDFs

given one x cannot be replicated by the linear combination of the CDFs of w1

given the other x′).

4. d(x, y1, y2, w2) = P[x,w2|y1, y2,m1=JJ,m2=EE] ̸= 0 for all x.

5. The following quantity is different for different x’s:

d(x, y, y, w2)d(x, y
′, y′, w2)

d(x, y′, y, w2)d(x, y, y′, w2)
.

Proof. We are going to show that given data around a move, we can identify the law

of motion for each pair of worker and firm types that employ all types. Throughout y1

and y2 can be either y or y′. We can write the following joint density as

P[w1, w2, w3|y1, y2,m1 = JJ,m2 = EE]

=
∑
x

P[x|y1, y2,m1 = JJ,m2 = EE]× P[w1, w2, w3|x, y1, y2,m1 = JJ,m2 = EE]

=
∑
x

P[x|y1, y2,m1 = JJ,m2 = EE]× P[w1|x, y1, y2,m1 = JJ]

× P[w2|x, y1, y2,m1 = JJ,m2 = EE]× P[w3|x,w2, y1, y2,m1 = JJ,m2 = EE],

where we used assumptions i) and ii) to establish the last equality. We then denote

the data matrix of the joint density of w1, w3 for a fixed value of w2 and a given y1, y2

by A(y1, y2, w2) ∈ Rnw×nw . Hence we have

A(y1, y2, w2) =
[
P[w1 ≤ wp, w2, w3 ≤ wq|y1, y2,m1 = JJ,m2 = EE]

]
p,q
.

We similarly define the nw-by-nx matrices

M1(y1) =
[
P[w1 ≤ wp|x = q, y1,m1 = JJ,m2 = EE]

]
p,q
,

MEE(y2, w2) =
[
P[w3 ≤ wp|x = q, w2, y2,m1 = JJ,m2 = EE]

]
p,q
,

and the the following diagonal matrix

D(y1, y2, w2) = diag
[
P[x = q, w2|y1, y2,m1 = JJ,m2 = EE]

]
q
,
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where M1(y),MEE(y2, w2) ∈ Rnw×nx and D(y1, y2, w2) ∈ Rnx×nx . We can then write

the identifying restrictions as

A(y1, y2, w2) = M1(y1)D(y1, y2, w2)M
⊤
EE(y2, w2).

The next step is to take the singular value decomposition of A(y, y′, w2) = USV ⊤

where the matrix S ∈ Rnx×nx by assumption iv) and iii) is diagonal, and U, V ∈
Rnw×nx are such that U⊤U=V ⊤V=Inx . For all y1, y2 ∈ {y, y′}, define B(y1, y2, w2) =

S− 1
2U⊤A(y1, y2, w2)V S− 1

2 where B(y1, y2, w2) ∈ Rnx×nx is invertible again by assump-

tion iii) and iv). Note that the different B(y1, y2, w2) matrices for each y1, y2 ∈ {y, y′}
use the same U, S, V matrices defined as the SVD for A(y, y′, w2).

We first note a property we will use at the end. We have thatD(y, y′, w2)M
⊤
EE(y

′, w2)

is full row rank (nx) by assumption iii) and iv), hence there exist a matrix M̃ ∈ Rnw×nx

such that
D(y, y′, w2)M

⊤
EE(y

′, w2)M̃ = Inx .

This implies that

UU⊤M1(y) = UU⊤M1(y)D(y, y′, w2)M
⊤
EE(y

′, w2)M̃

= UU⊤USV ⊤M̃

= M1(y)D(y, y′, w2)M
⊤
EE(y

′, w2)M̃

= M1(y).

We then construct

B(y, y, w2)B(y′, y, w2)
−1 = S− 1

2U⊤M1(y)D(y, y, w2)M
⊤
EE(y, w2)V S− 1

2

×
(
S− 1

2U⊤M1(y
′)D(y′, y, w2)M

⊤
EE(y, w2)V S− 1

2

)−1

= Q1(y)D(y, y, w2)D(y′, y, w2)
−1Q1(y

′)−1,

where we used Q1(y) = S− 1
2U⊤M1(y) ∈ Rnx×nx . We note that Q1(y

′) is full rank since

A(y′, y, w2) has rank nx from Assumption part iii) and iv). We have then established

the following eigenvalue problem:

B(y, y, w2)B(y′, y, w2)
−1B(y′, y′, w2)B(y, y′, w2)

−1 =

Q1(y)D(y, y, w2)D(y′, y, w2)
−1D(y′, y′, w2)D(y, y′, w2)

−1Q1(y)
−1.

Provided that the eigenvalues are unique, as guaranteed by assumption v), this iden-

tifies Q1(y). We have established that UU⊤M1(y) = M1(y) and hence we identified

M1(y) = US
1
2Q1(y) up to the scale of the eigenvalue. This scale is pinned down by the

fact that the columns of M1(y) are each a c.d.f which allows using that they equal 1
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at wnw .

With Q1(y) identified we can use the fact that

Q−1
1 (y)S− 1

2A(y, y′, w2) = D(y, y′, w2)M
⊤
EE(y

′, w2).

All objects on the left hand side are known and hence MEE(y
′, w2) is identified up to

scale. We can use again, that the columns are CDFs and hence equal 1 at the top.

Once MEE(y
′, w2) and M1(y) are known we can get P[w2, x|y1 = y, y2 = y′,m1 =

JJ,m2 = EE] from A(y, y′, w2). This gives us the wage conditional on moving, as well

as the destination firm for each of the worker types.

Lemma B.2. We recover M1(y
′′) and MEE(y

′′, w) for all other y′′ and w using the

identified MEE(y, w2) and M1(y) from Lemma B.1.

Proof. We have identified M1(y) and MEE(y, w2) for a specific y and w2. We then note

that
A(y′′, y, w2)MEE(y, w2) = M1(y

′′)D(y′′, y, w2)M
⊤
EE(y, w2)MEE(y, w2),

where M⊤
EE(y, w2)MEE(y, w2) is know and invertible from Lemma B.1. Hence, the

matrix M1(y
′′)D(y′′, y, w2) is identified. We finally use the fact that M1(y

′′) is a CDF

to separate M1(y
′′) from D(y′′, y, w2). This identifies M1(y

′′) and D(y′′, y, w2) for all

y′′ with the same labeling as in Lemma B.1. Whenever D(y′′, y, w2) we can’t get the

corresponding wage density since there are no movers. Though there are no movers

only when that particular type never works in the firm.

Next we use the same reasoning for a different w2. We note that for the y and y′

of Lemma B.1 and a w′
2 we have:

M1(y)
⊤A(y, y′, w′

2) = M1(y)
⊤M1(y)D(y, y′, w′

2)M
⊤
EE(y, w

′
2),

where M1(y)
⊤M1(y) is known and invertible. Hence D(y, y′, w′

2)M
⊤
EE(y, w

′
2) is identi-

fied. We finally use the fact that M⊤
EE(y, w

′
2) is a CDF to separate M⊤

EE(y, w
′
2) from

D(y, y′, w′
2). This identifies both.

Lemma B.3. P[y4, w4,m3, y3, w3,m2|m1 = EE, y1, w1, w2, x] is identified from

P[y4, w4,m3, y3, w3,m2, w2|m1 = EE, y1, w1] provided that

1. P [w2, x|m1 = EE, y1, w1] are linearly independent.

2. P[w2|x,w1, y1,m1=EE] is known (from Lemma B.1)

Proof. We first consider the following marginal distribution:

P[w2|m1 = EE, y1, w1] =
∑
x

P[w2|x,m1 = EE, y1, w1]P[x|m1 = EE, y1, w1], (31)
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where P[w2|x,m1 = EE, y1, w1] is known and the column rank assumption of Lemma

B.1 gives that P[x|m1 = EE, y1, w1] is identified.

We then note that

P[y4,w4,m3, y3, w3,m2, w2|m1 = EE, y1, w1]

=
∑
x

P[y4, w4,m3, y3, w3,m2|m1 = EE, y1, w1, w2, x]

× P [w2, x|m1 = EE, y1, w1]

where the left hand side is data and P [w2, x|m1 = EE, y1, w1] is known from the

previous step and Lemma B.1. The linear independence assumption concludes the

proof.

Corollary 1. P[y4, w4,m3, y3, w3,m2|m1 = EE, y1, w1, w2, x] identifies the following

quantities:

• P[mt = EU|x, yt]
• P[mt = UE|x, yt = 0]

• P[yt+1, wt+1|mt = UE, x]

• P[mt = JJ|x, yt]
• P[yt+1, wt+1|mt = JJ, x, yt]

Proof. The result follows from the Markovian properties of the model. For example:

P[yt+1,wt+1|mt = UE, x]

= P[yt+1, wt+1|mt = UE, x,mt−2 = EE,mt−1 = EU, wt−2]

= P[y4 = yt+1, w4 = wt+1,m3 = UE, y3, w3,m2|m1 = EE, y1, w1, w2, x]

Corollary 2. Cross-sectional distributions are identified using transition probabilities

from Corollary 1.

B.5 Parametric G
Assumption 3. Sx,y > 0, for all x, y.

Let

pJJ(y
′|y, x) = δx,yλ

1vy′

V
G

1
(Sx,y − Sx,y′) ,

pUE(y|x) = λ0
vy
V
G

0
(−Sx,y) ,

and with Sx,y > 0,
pEU(x, y) = δx,y.
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1) Within-group JJ transitions,

pJJ(y
′|y′, x) = δx,y′λ

1vy′

V
G(0),

identify
λ1
vy′

V
=

pJJ(y
′|y′, x)

G(0)pEU(x, y′)
,

and λ1 follows by integration.

2) Then,
ρ1 (Sx,y − Sx,y′) = G

−1
(θ1(x, y, y

′)).

for
θ1(x, y, y

′) :=
G(0)pJJ(y

′|y, x)
pJJ(y′|y′, x)

.

Moreover,
pUE(y|x) =

λ0

λ1
λ1
vy
V

[1− 2G (−ρ0Sx,y)]

yields
ρ0Sx,y = (1− 2G)−1

(
λ1

λ0
θ0(x, y)

)
for

θ0(x, y) :=
pUE(y|x)
λ1 vy

V

= G(0)
pEU(x, y)pUJ(y|x)

pJJ(y|y, x)
.

3) We can write, for any triple (y1, y2, y3),

(1− 2G)−1
(

λ1

λ0
θ0(x, y3)

)
− (1− 2G)−1

(
λ1

λ0
θ0(x, y1)

)
(1− 2G)−1

(
λ1

λ0
θ0(x, y2)

)
− (1− 2G)−1

(
λ1

λ0
θ0(x, y1)

) =
G

−1
(θ1(x, y1, y3))

G
−1

(θ1(x, y1, y2))
,

which identifies λ1

λ0
if G is not linear. Finally,

(1− 2G)−1

(
λ1

λ0
θ0(x, y)

)
− (1− 2G)−1

(
λ1

λ0
θ0(x, y

′)

)
= ρ0 (Sx,y − Sx,y′)

=
ρ0
ρ1

G
−1

(θ1(x, y, y
′))

identifies ρ0
ρ1
. Note that this equation caries a lot of information on the shape of G

itself. So, we learn a lot from the assumption that G0 and G1 have the same shape up

to different scale parameters.

At this stage, we have identified vy/V , λ1, λ0, ρ0 and all Sx,y’s up to the multiplica-

tive scale ρ1.

B.5.1 Wage equation

We first show by integration by part in equation (7) that we can write

u(wx,y(R)) = cx,y+bx+
r + δx,y
1 + r

R−λ1δx,y
1 + r

Y∑
y′=1

[∫ Sx,y−Sx,y′

R−Sx,y′

G
1
(ξ) dξ +

∫ ∞

Sx,y

G
1
(ξ) dξ

]
vy′ ,

since
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∫ Sx,y−Sx,y′

R−Sx,y′

(Sx,y′ + ξ −R) g1(ξ) dξ = − (Sx,y −R)G
1
(Sx,y − Sx,y′)

+

∫ Sx,y−Sx,y′

R−Sx,y′

G
1
(ξ) dξ

and∫ ∞

Sx,y−Sx,y′

(max{ξ, Sx,y} −R) g1(ξ) dξ

=

∫ ∞

Sx,y−Sx,y′

(max{ξ − Sx,y, 0}+ Sx,y −R) g1(ξ) dξ

=

∫ ∞

Sx,y

G
1
(ξ) dξ + (Sx,y −R)G

1
(Sx,y − Sx,y′) .

We finally obtain

u(wx,y(R)) = cx,y + bx +
r + δx,y
1 + r

R

− λ1δx,yV

1 + r

(
Y∑

y′=1

[∫ Sx,y−Sx,y′

R−Sx,y′

G(ρ1ξ) dξ

]
vy′

V
+

∫ ∞

Sx,y

G(ρ1ξ) dξ

)
.

Expressions for transition wages follow. Wages out of unemployment occur after draw-

ing ξ from G0 such that −Sx,y < ξ < 0, and have R = 0 (wx,y = wx,y(0)):

u(wx,y) = cx,y + bx −
λ1δx,yV

1 + r

(
Y∑

y′=1

[∫ Sx,y−Sx,y′

−Sx,y′

G(ρ1ξ) dξ

]
vy′

V
+

∫ ∞

Sx,y

G(ρ1ξ) dξ

)
.

Next, a JJ transition from y to y′ occurs after drawing ξ from G1 such that ξ >

Sx,y − Sx,y′ , and the hiring wage is wx,y′(max {Sx,y, ξ}).

u(wx,y′(max {Sx,y, ξ})) = cx,y′ + bx +
r + δx,y′

1 + r
max {Sx,y, ξ}

− λ1δx,y′V

1 + r

(
Y∑

y′′=1

[∫ Sx,y′−Sx,y′′

max{Sx,y ,ξ}−Sx,y′′

G(ρ1ξ
′) dξ′

]
vy′′

V
+

∫ ∞

Sx,y′

G(ρ1ξ
′) dξ′

)
.

In these wage equations, we do not know cx,y + bx, ρ1, or V . A JJ transition within

the same group of firms yields

u(wx,y(max {Sx,y, ξ}))− u(wx,y) =
r + δx,y
1 + r

max {Sx,y, ξ}

+
λ1δx,yV

1 + r

Y∑
y′=1

[∫ max{Sx,y ,ξ}−Sx,y′

−Sx,y′

G(ρ1ξ
′) dξ′

]
vy′

V
.

Again, the nonlinearity of the integral allows to identify ρ1 separately from V . We
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obtain ρ1 after eliminating V using two different firm types. Then, cx,y + bx follows

from level wages.

B.5.2 ML estimation of structural parameters

Let fUE(w|x, y) and fJJ(w|x, y, y′) denote the PDF of the distributions of transitions

wages estimated in the first step. We also allow for Gaussian measurement error with

variance ω2.

We estimate θ =
(vy
V
, δx,y, λ

1, λ0, ρ1, ρ0, Sx,y, cx,y + bx, V
)
by maximizing the pseudo

likelihood:‌
L =

X∑
x=1

ℓ0xL
0
x +

X∑
x=1

Y∑
y=1

ℓ1x,yL
1
x

where

L0
x =

∑
y

pUE(y|x) ln
(
λ0
vy
V
(1− 2G) (−ρ0Sx,y)

)
+ pUU(x) ln

(
1−

∑
y

λ0
vy
V
(1− 2G) (−ρ0Sx,y)

)

+
∑
y

pUE(y|x)
∫

fUE(w|x, y) ln
1

ω
ϕ

(
u(w)− u(wx,y)

ω

)
du(w)

and

L1(x, y) =
∑
y′

pJJ(y
′|x, y) ln

(
δx,yλ

1vy′

V
G (ρ1 (Sx,y − Sx,y′))

)
+ pEU(x, y) ln δx,y

+ pEE(x, y) ln

(
1− δx,y − δx,y

∑
y′

λ1
vy′

V
G (ρ1 (Sx,y − Sx,y′))

)

+
∑
y′

pJJ(y
′|x, y)

∫
fJJ(w|x, y, y′)×

ln

(∫ ∞

Sx,y−Sx,y′

1

ω
ϕ

[
u(w)− u(wx,y′(max {Sx,y, ξ}))

ω

]
ρ1g (ρ1ξ)

G (ρ1 (Sx,y − Sx,y′))
dξ

)
du(w).

Note that we make no use of within-job wage changes. There are lots of wage cuts on

the job that the model does not generate. There is thus little hope of fitting within-

spell wage dynamics well. One can however check ex post if the model delivers average

wage changes well.

The reason why this works is that if first-stage estimators are consistent, then
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∑
y

pUE(y|x)
∂

∂θ
ln
(
λ0
vy
V
(1− 2G) (−ρ0Sx,y)

)
+ pUU(x)

∂

∂θ
ln

(
1−

∑
y

λ0
vy
V
(1− 2G) (−ρ0Sx,y)

)

=
∑
y

pUE(y|x)
λ0 vy

V
(1− 2G) (−ρ0Sx,y)

∂

∂θ

(
λ0
vy
V
(1− 2G) (−ρ0Sx,y)

)
+

pUU(x)

1−∑y λ
0 vy
V
G (−ρ0Sx,y)

∂

∂θ

(
1−

∑
y

λ0
vy
V
G (−ρ0Sx,y)

)

≃ ∂

∂θ

∑
y

(
λ0
vy
V
(1− 2G) (−ρ0Sx,y)

)
+

∂

∂θ

(
1−

∑
y

λ0
vy
V
(1− 2G) (−ρ0Sx,y)

)
=

∂1

∂θ
= 0.

The fractions in red are asymptotically equation 1 if first stage estimators are consis-

tent. Hence, the true parameter value maximizes∑
y

pUE(y|x) ln
(
λ0
vy
V
(1− 2G) (−ρ0Sx,y)

)
+ pUU(x) ln

(
1−

∑
y

λ0
vy
V
(1− 2G) (−ρ0Sx,y)

)
.

Similarly,∑
y

pUE(y|x)
∫

fUE(w|x, y)
∂

∂θ
ln

1

ω
ϕ

(
u(w)− u(wx,y)

ω

)
du(w)

=
∑
y

pUE(y|x)
∫

fUE(w|x, y)
1
ω
ϕ
(

u(w)−u(wx,y)

ω

) ∂

∂θ

1

ω
ϕ

(
u(w)− u(wx,y)

ω

)
du(w)

≃
∑
y

pUE(y|x)
∂

∂θ

∫
1

ω
ϕ

(
u(w)− u(wx,y)

ω

)
du(w) = 0.

Note that we do not need to weigh all y’s by pUE(y|x) since it does not depend on θ.

The argument also applies to L1(x, y).

B.6 Variance Decomposition
We apply the law of total variance, given by:

V ar(A|C) = E[V ar(A|B,C)|C] + V ar(E[A|B,C]|C).
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First, by using A = logw, C = x, and B = R, and defining µR = E[logw|R, x], we

obtain:

V ar(logw|x) = E[V ar(logw|R, x)|x] + V ar(µR|x)

Second, we decompose the last term using A = µR, C = x, and B = y to obtain:

V ar(logw|x) = E[V ar(logw|R, x)|x] + V ar(E(µR|y, x)|x) + E[V ar [µR|y, x] |x]

Finally, one might be concerned that the within R terms incorrectly attribute the

within firm variation in delivering R to worker x within firm y to a Rosen compensating

differential, which should strictly apply between firms. However, in our model, this

within R, x, y variance is 0 theoretical, so we focus directly on the within R term.

Formally, we can apply the decomposition to V ar(logw|R, x) using A = logw,

B = y, and C = R, x to obtain

V ar(logw|R, x) = E[V ar(logw|R, x, y)|R, x] + V ar(E(logw|y,R, x)|R, x)

In our model, the wage is a deterministic function of R, x, y so the conditional variance

is 0, V ar(logw|R, x, y) = 0, and hence, in our case, there is only variation between y.

B.7 Elasticities in fixed capacity firm
Consider a firm with n jobs. When jobs are vacant, they meet workers with a hiring

probability of h(w). When a job is filled, the match separates with a probability of

q(w). We consider the stationary relationship where separations equal hires:

h(w)(C − n(w)) = n(w)q(w).

This implies that

n(w) = C
h(w)

h(w) + q(w)
.

From there, we can derive the elasticity of n(w) from the elasticities of h(w) and q(w):

∂ log n(w)

∂ logw
=

∂ log h(w)

∂ logw
− ∂ log h(w) + q(w)

∂ logw

= w
h′(w)

h(w)
− w

h′(w) + q′(w)

h(w) + q(w)

=
q(w)

h(w) + q(w)

(
∂ log h(w)

∂ logw
− ∂ log q(w)

∂ logw

)
In the Manning type setting, we start from

ñ(w) =
h(w)

q(w)
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which gives immediately that

∂ log ñ(w)

∂ logw
=

∂ log h(w)

∂ logw
− ∂ log q(w)

∂ logw

B.8 Data, sample, and variable construction
We used the raw matched employer-employee data set constructed in Friedrich et al.

(2022). This links information from three data sources made available by The Institute

for Evaluation of Labour Market and Education Policy (IFAU).

The primary data sources for this study are three datasets. The first is the Longi-

tudinal Database on Education, Income, and Employment (LOUISE), which provides

comprehensive information on demographic and socioeconomic variables for the entire

working-age population in Sweden, spanning from 1990 to the present.

The second dataset is the Register-Based Labor Market Statistics (RAMS), which

covers employment spells in Sweden starting from 1985 and continuing to the present.

RAMS includes essential details such as gross annual earnings, the initial and final

remunerated months for each employee-firm spell, and unique firm identifiers at the

Corporate Registration Number level.

On the firm-related side, RAMS also records information about the industries and

types of legal entities for all firms that employ workers. Finally, we draw from the third

data source, the Structural Business Statistics (SBS), which encompasses accounting

and balance sheet information for all nonfinancial corporations in Sweden, spanning

from 1997 to the present. Of particular interest within SBS is the variable called

FORBRUKNINGSVARDE, which provides a measure of value added at both the firm

and annual levels. All monetary variables are adjusted for inflation (detrended with

the CPI).

Our analysis is centered on the years 2000 to 2004. The sample we examine com-

prises all firms classified as either a limited partnership or a limited company, excluding

banking and insurance companies. There are two specific restrictions inherited from

the original data construction: spells with monthly earnings below 3,416 Swedish kro-

nor in 2008 are excluded from the sample, and spells that span less than two months

of employment (i.e., instances where the start month is the same as the end month)

are also excluded from our analysis.

In addition to CPI detrending, we remove yearly means from the data and limit it

to workers under the age of 50.
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(a) Model Stationary (b) Data (Step 1)

Figure 7: Model stationary distribution and distribution in first step.
Notes: comparing distribution implied by the surplus to distribution estimated with empirical model
in Step 1.

B.9 Likelihood for transitions
We estimate the following set of parameters Sx,y and ṽy = vy/V , λ0, λ1, ρ0 and ρ1,

that we denote θ by maximizing the following log-likelihood subject to the moment

constraints in the text:

max
θ

∑
x

ℓ0x

[∑
y′

P[yt+1=y′,mt=UE|x]× log λ0ṽy′G
0(ρ0Sx,y′)

+ P[mt=UU|x]× log
(
1−

∑
y′

λ0ṽy′G
0(ρ0Sx,y′)

)]
+
∑
x,y

ℓ1x,yδx,y

[∑
y′

P[yt+1=y′,mt=JJ|yt=y, x]× log λ1ṽy′G
1(ρ1Sx,y′ − ρ1Sx,y)

+ P[mt=EE|yt=y, x]× log
(
1−

∑
y′

λ1ṽy′G
1(ρ1Sx,y′ − ρ1Sx,y)

)]
s.t. m1(θ) = m1,m2(θ) = m2

where P[yt+1=y′,mt=UE|x], P[mt=UU|x], P[yt+1=y′,mt=JJ|yt=y, x], P[mt=EE|yt=y, x]

and ℓ1x,y and ℓ0x are known from step 1. The moments m1(θ),m2(θ) are constructed by

simulation, since given θ we can simulate wages and transitions.

B.10 Estimated parameters

References Online Appendix
Bonhomme, S., T. Lamadon, and E. Manresa (2019): “A distributional frame-

work for matched employer employee data,” Econometrica, 87, 699–739.
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Figure 8: Dynamics within job: Equilibrium and Bidding Deviation
Notes: We conduct the following model experiment. First we start by sampling a large number of
vacant jobs drawn from vy. We then simulate forward as these vacancies become filled and eventually
converge to the stationary equilibrium. The blue lines in each panel are the average outcome across
these jobs for (a) the sparation probability, (b) total wage bill, (c) job occupancy rate, (d) hiring
probability, (e) mean log wage, and (f) match output. In each case the outcome has converged after
20 years. Next, we simulate the same path but assume that each firm uses a strategy B = (1−∆)S
when competing for workers with other firms bidding the equilibrium B′ = Sx,y′ . We then use the
differences, for ∆ = 0.05, in the generated average wage, hiring probability, and separation probability
to calculate the elasticities presented in Table 2.
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Table 3: Model Parameters

Firm group: 1 2 3 4 5 6 7 8 9 10

Production fx,y

1 0.66 0.99 1.03 1.32 1.24 1.39 1.45 1.18 1.12 1.46
2 0.84 1.06 1.12 1.31 1.20 1.40 1.37 1.21 1.09 1.07
3 1.03 1.22 1.31 1.48 1.46 1.59 1.58 1.51 1.58 1.66
4 1.39 1.64 1.73 1.92 1.85 1.97 1.96 1.87 1.96 2.11
5 2.03 2.23 2.79 2.74 2.82 2.98 2.80 2.73 2.95 2.97

Amenity c̃x,y

1 -0.85 -0.74 -0.70 -0.57 -0.49 -0.49 -0.36 -0.02 0.09 0.41
2 -0.34 -0.33 -0.27 -0.23 -0.22 -0.18 -0.09 0.02 0.08 0.09
3 -0.06 -0.13 -0.08 -0.11 -0.01 -0.08 -0.01 0.10 0.26 0.39
4 0.36 0.30 0.30 0.31 0.29 0.28 0.31 0.35 0.38 0.55
5 0.79 0.71 0.87 0.77 0.76 0.78 0.71 0.73 0.73 0.80

Separation δx,y

1 0.10 0.10 0.11 0.09 0.10 0.09 0.10 0.09 0.08 0.09
2 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01
3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
4 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.01
5 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.02

Common parameters

r 0.0125
ρ0 0.108
ρ1 0.460
κ 0.086
Firm Mass 1.88

Note: All the parameters needed to solve and simulate the model. See graphical versions in 3.a,b, and

1.g.
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Table 4: Two-way linear decomposition in the model

Total variance of log wages 0.1408

Percent of total variance explained by
Worker effects 49.52%
Firm effects 9.65%
Covariance of worker and firm 20.18%
Non-linear component 1.36%
Residual 19.29%

Notes: log wage variance decomposition in the cross-section generated by the model. We project the
model-simulated wages on a dummy for each x, a dummy for each y and joint dummy x, y.

Table 5: Statistical variance decomposition of wages just after a move.

Variance of log poaching wages 0.1432

Percent of total variance explained by
Worker effects 49.75%
Destination firm effects 8.51%
Origin effects 0.47%
Covariance of worker, destination 20.04%
Covariance of worker, origin -2.12%
Covariance of destination, origin -0.50%
Residual 23.84%

Note: This table is based on model simulated data and mirrors Table 5 of Di Addario et al. (2023). The

numbers are quantitatively similar with meaningful shares attributed to worker effects, destination

effect and sorting on destination, with very little effect from firm of origin, despite wages being

generated from sequential auctions.
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