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W1 Model web appendix

W1.1 Properties of equilibrium functions

In this section, we define the set J of profit functions of the firm and then,

taking an arbitrary J ∈ J as given, derive properties of the market tightness,

job finding probability, and search and effort policy functions in equilibrium.

Definition W1 (Definition of J). Let J be defined as the set of firms’ value

functions J : S× V→ R such that

(J1) For all (x, z) ∈ S and all V1, V2 ∈ V with V1 ≤ V2, the difference J(x, z, V2)−

J(x, z, V1) is bounded by −BJ(V2 − V1) and −BJ(V2 − V1) where BJ ≥

BJ > 0 are some constants.

(J2) For all (x, z, V ) ∈ S × V, J(x, z, V ) is bounded in [J, J ] where J =
f(x,z)−u−1

(
v+c(e)−βv

)
1−β and J =

f(x,z)−u−1
(
v+c(e)−βv

)
1−β .

(J3) For all (x, z) ∈ S, J(x, z, V ) is concave in V .

(J4) For all (x, z) ∈ S, J(x, z, V ) is differentiable in V .

Lemma W1 (Uniqueness of θ). The market tightness function θ(x, v) is unique

in equilibrium.

Proof of Lemma W1. Consider the firm value function, rewritten as:

J(x, z, V ) = max
πi,wi,Wi

∑
i=1,2

πi
(
f(x, z)− wi + βp̃(x,Wi)M(x, z,Wi)

)
s.t V ≤

∑
i=1,2

πi (u(wi) + r̃(x,Wi)) ,

∑
i=1,2

πi = 1,
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where

M(x, z,W ) = max
Wx′z′

Ex′z′ [J(x′, z′,Wx′z′)|x, z]

s.t W = Ex′z′ [Wx′z′|x, z].

Free entry can then be expressed as:

Π(x, v) =q(θ(x, v))M(x, z0, v)− k ≤ 0.

From the assumption on q(θ) and its invertibility, as well as free entry, it follows

that θ(x, v) = q−1(k/M(x, z0, v)) for M(x, z0, v) ≥ k (or equivalently for v ≤

ṽ(x), where ṽ(x) is the solution to k = M(x, z0, v) with respect to v) and is

bounded between 0 and θ ≡ q−1(k/J). Otherwise θ(x, v) = 0. Hence, the

market tightness function is unique.

Lemma W2 (θ is decreasing and continuous in v). For all x ∈ X, the market

tightness function, θ(x, v), is such that

BJ

q′
(
θ
)
k

(v2 − v1) ≤ θ (x, v2)− θ (x, v1) ≤ BJ k

q′ (0) J2 (v2 − v1) , if v1 ≤ v2 ≤ ṽ(x),

BJ

q′
(
θ
)
k

(v2 − v1) ≤ θ (x, v2)− θ (x, v1) ≤ 0, if v1 ≤ ṽ(x) ≤ v2,

θ (x, v2)− θ (x, v1) = 0, if ṽ(x) ≤ v1 ≤ v2,

where BJ and BJ are the bi-Lipschitz bounds on all functions in J.

Proof of Lemma W2. We suppress the dependence of various functions on x

and z to improve readability. Let x be an arbitrary point in X, and let v1, v2 be

two points in V with v1 ≤ v2. First, consider the case in which v1 ≤ v2 ≤ ṽ. In

this case, the difference θ (x, v2)− θ (x, v1) is equal to

θ (x, v2)− θ (x, v1) = q−1(k/M (v2))− q−1(k/M (v1)) =
k/M(v2)ˆ

k/M(v1)

(q−1)′(t) dt,
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where the first equality uses Lemma W1, and the second equality uses the fact

that M is decreasing in v and M(v1) ≥ M(v2) ≥ k > 0. For all v ∈ [v, ṽ],

the derivative of the inverse function q−1(·) evaluated at k/M(v) is equal to

1/q′(θ (x, v)) ∈
[
1/q′(θ), 1/q′(0)

]
, where 1/q′(θ) ≤ 1/q′(0) < 0. Therefore the

last term in the previous equation satisfies:

1
q′(θ)

(
k

M(v2) −
k

M(v1)

)
≤

k/M(v2)ˆ

k/M(v1)

(q−1)′(t)dt ≤ 1
q′(0)

(
k

M(v2) −
k

M(v1)

)
,

where

k

M(v2) −
k

M(v1) =
M(v1)ˆ

M(v2)

k

t2
dt.

For all v ∈ [v, ṽ], M(v) is strictly decreasing in v and it is bounded between J

and k. Therefore, setting t in the integral on the RHS above to be either k or

J gives bounds such that
M(v1)ˆ

M(v2)

k

t2
dt ≤ 1

k
[M(v1)−M(v2)] ≤BJ

k
(v2 − v1) ,

M(v1)ˆ

M(v2)

k

t2
dt ≥ k

J
2 [M(v1)−M(v2)] ≥BJk

J
2 (v2 − v1) ,

where the latter inequalities use the fact that differences in J and hence also

in M are bounded as in the definition of J. Taken together, the difference

θ (x, v2)− θ (x, v1) is such that

BJ

q′(θ)k
(v2 − v1) ≤ θ (x, v2)− θ (x, v1) ≤ BJk

q′(0)J2 (v2 − v1) .

Next, consider the case in which v1 ≤ ṽ ≤ v2. Then the difference θ (x, v2)−
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θ (x, v1) satisfies:

θ (x, v2)− θ (x, v1) = θ (x, ṽ)− θ (x, v1) ≤ BJk

q′(0)J2 (ṽ − v1) ≤ 0,

θ (x, v2)− θ (x, v1) = θ (x, ṽ)− θ (x, v1) ≥ BJ

q′(θ)k
(ṽ − v1) ≥ BJ

q′(θ)k
(v2 − v1) ,

where both lines use the bounds in the previous expression and the fact that

θ (x, ṽ) = θ (x, v2).

Finally, in the case where ṽ ≤ v1 ≤ v2, Lemma W1 implies that θ (x, v1) =

θ (x, v2) = 0.

Lemma W3 (p is strictly decreasing, strictly concave and continuous in v).

For all x ∈ X, and all v ∈ [v, ṽ (x)], the composite function p (θ (x, v)) is strictly

decreasing and strictly concave in v.

Proof of Lemma W3. The function p (θ) is strictly increasing in θ, and θ(x, v)

is strictly decreasing in v for all v ∈ [v, ṽ]. Therefore, p (θ(x, v)) is strictly

decreasing in v for v ∈ [v, ṽ]. In order to prove that the composite function

p (θ(x, v)) is strictly concave in v for v ∈ [v, ṽ], consider arbitrary v1, v2 ∈ [v, ṽ],

with v1 6= v2, and an arbitrary number α ∈ (0, 1). Let vα = αv1 + (1− α)v2.

The function M(x, z, v) is continuous and concave in v, which follows from

the Maximum Theorem under Convexity as the two conditions that Ex′z′ [J(x′, z′,Wx′z′)|x, z]

is concave and that the constraint is a continuous correspondence with a convex

graph are satisfied (see Sundaram et al. (1996), p. 238). So, since M(v) is

concave in v and the function k/v is strictly convex in v, we have

k

M(vα) ≤
k

αM(v1) + (1− α)M(v2) < α
k

M(v1) + (1− α) k

M(v2) .

Since p(q−1(·)) is strictly decreasing and weakly concave, the previous inequality
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implies that

p
(
q−1 (k/M(vα))

)
>p

(
q−1

(
α

k

M(v1) + (1− α) k

M(v2)

))

≥αp
(
q−1

(
k

M(v1)

))
+ (1− α)p

(
q−1

(
k

M(v2)

))
.

Since q−1(k/M(v)) is equal to θ(x, v) for all v ∈ [v, ṽ], the last inequality can

be rewritten as

p(θ(x, vα)) > αp(θ(x, v1)) + (1− α)p(θ(x, v2))

which establishes that p(θ(x, v)) is strictly concave in v for all v ∈ [v, ṽ]. Since

every concave function is continuous, p(θ(x, v)) is also continuous in this range.

We introduce the return to search D(x,W ) ≡ maxv′∈V d(x, v′,W ), where

d(x, v′,W ) ≡ p (θ(x, v′)) (v′ − W ), which is maximized by the search policy

function m(x,W ) with m : X× V→ V, given the market tightness function θ.

Lemma 3.1 in ? establishes that m(x,W ) is unique such that:

m(x,W ) =


arg max

v′∈V
d(x, v′,W ) if W < ṽ(x)

W otherwise.

The next lemmas establish that D(x,W ) is a decreasing function in W and that

m(x,W ) is increasing in W .

Lemma W4 (D is decreasing and continuous in W , m is increasing and con-

tinuous in W ). For all x ∈ X and all W1,W2 ∈ V with W1 ≤ W2, the return to

search function, D, satisfies:

− (W2 −W1) ≤ D (x,W2)−D (x,W1) ≤ 0
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and the search policy function, m, is such that

0 ≤ m (x,W2)−m (x,W1) ≤ W2 −W1.

Proof of Lemma W4. Let W1 ≤ W2 be two arbitrary points in V. Then:

D (x,W2)−D (x,W1) ≤ d(x,m(x,W2),W2)− d(x,m(x,W2),W1)

≤ −p(θ(x,m(x,W2))(W2 −W1) ≤ 0,

D (x,W2)−D (x,W1) ≥ d(x,m(x,W1),W2)− d(x,m(x,W1),W1)

≥ −p(θ(x,m(x,W1))(W2 −W1) ≥ −(W2 −W1),

where the first inequality in both lines uses the fact that D(x,Wi) is equal

to d(x,m(x,Wi),Wi) and greater than d(x,m(x,W−i),Wi) where −i 6= i and

i,−i = 1, 2. Thus the first part of the lemma holds.

Next, if W1 ≥ ṽ(x), then m(x,W2) = W2 and m(x,W1) = W1. If W1 ≤

ṽ(x) ≤ W2, then m(x,W2) = W2 and m(x,W1) ∈ (W1, ṽ(x)). In both cases, the

second claim clearly holds. Now, consider the remaining case where W1 ≤ W2 <

ṽ(x). Since d(x,m(x,W1),W1) ≥ d(x,m(x,W2),W1) and d(x,m(x,W2),W2) ≥

d(x,m(x,W1),W2) we have:

0 ≥ d(x,m(x,W2),W1)− d(x,m(x,W1),W1) + d(x,m(x,W1),W2)− d(x,m(x,W2),W2)

= p(θ(x,m(x,W2))(W2 −W1)− p(θ(x,m(x,W1))(W2 −W1)

= [p(θ(x,m(x,W2))− p(θ(x,m(x,W1))](W2 −W1).

Since p(θ(x, v)) is decreasing in v (see Lemma W3), this also implies that

m(x,W2) ≥ m(x,W1). If it holds with equality, i.e. if m(x,W2) = m(x,W1),

the second part of the lemma holds as well. If instead m(x,W2) > m(x,W1),
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consider the arbitrary real number ∆ ∈
(
0, m(x,W2)−m(x,W1)

2

)
so that

d(x,m(x,W1),W1) ≥ d(x,m(x,W1) + ∆,W1)

p(θ(x,m(x,W1)))(m(x,W1)−W1) ≥ p(θ(x,m(x,W1) + ∆))(m(x,W1) + ∆−W1)

[p(θ(x,m(x,W1)))− p(θ(x,m(x,W1) + ∆))](m(x,W1)−W1) ≥ p(θ(x,m(x,W1) + ∆))∆

m(x,W1)−W1 ≥
p(θ(x,m(x,W1) + ∆))∆

p(θ(x,m(x,W1)))− p(θ(x,m(x,W1) + ∆)) .

Similarly, because d(x,m(x,W2),W2) ≥ d(x,m(x,W2)−∆,W2), it holds that

m(x,W2)−W2 ≤
p(θ(x,m(x,W2)−∆))∆

p(θ(x,m(x,W2)−∆))− p(θ(x,m(x,W2))) .

Recall that the function p(θ(x, v)) is decreasing and concave in v for all v ≤

ṽ(x). Since m(x,W1) + ∆ ≤ m(x,W2) − ∆, then p(θ(x,m(x,W1) + ∆)) ≥

p(θ(x,m(x,W2)−∆)). Similarly, sincem(x,W1) < m(x,W2), p(θ(x,m(x,W1)))−

p(θ(x,m(x,W1)+∆)) ≤ p(θ(x,m(x,W2)−∆))−p(θ(x,m(x,W2))). From these

observations and the inequalities above, it follows that m(x,W2)−m(x,W1) ≤

W2 −W1. Hence, the lemma holds.

Lemma W5 (p̂ is decreasing and continuous in W ). For all x ∈ X and all

W1,W2 ∈ V with W1 ≤ W2, the quitting probability p̂(x,W ) ≡ p(θ(x,m(x,W )))

is such that

−Bp (W2 −W1) ≤ p̂ (x,W2)− p̂ (x,W1) ≤ −Bp (W2 −W1) (1)

where Bp = −p′(0)BJ

q′(θ)k > 0 and Bp = 0.

Proof of Lemma W5. Let x be an arbitrary point in X, and let W1,W2 be points

in V with W1 ≤ W2. Recall from Lemma W4 that 0 ≤ m (x,W2)−m (x,W1) ≤

W2 − W1. From Lemma W2, it follows that the difference θ(x,m (x,W2)) −

θ(x,m (x,W1)) is greater than (W2 −W1)BJ/[q′(θ)k] and smaller than 0. Fi-

nally, given concavity of p in θ, the difference p(θ(x,m(x,W2)))−p(θ(x,m(x,W1)))
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is such that

p′ (0)BJ

q′(θ)k
(W2 −W1) ≤ p(θ(x,m(x,W2)))− p(θ(x,m(x,W1))) ≤ 0,

which gives the bounds on p̂(x,W ).

Lemma W6 (Differentiability of p̂(x,W ) in W ). For all x ∈ X and all W ∈ V

with , the quitting probability p̂(x,W ) = p(x,m(x,W )) is differentiable a.e. in

W .

Proof of Lemma W6. The proof evolves in two steps. In the first step, it is

shown that p(θ(x, v)) is differentiable in v, then the second step turns to showing

that p̂(x,W ) is differentiable (almost everywhere) in W .

First, p(θ(x, v)) is strictly concave, strictly decreasing and continuous in v

and Rademacher’s Theorem states that every concave function is differentiable

almost everywhere. Hence, it needs to be shown that p is differentiable ev-

erywhere. Observe that M(x, z0, v) is concave in v and so it is differentiable

almost everywhere. To show it is differentiable everywhere, assume that at a

specific point ṽ the function M is not differentiable, so there exists a point of

non-differentiability at M(x, z0, ṽ). We show that this cannot be the case. Let

a different function M̃(x, z0, v) be defined as

M̃(x, z0, v) =
∑
x′ 6=x′i

∑
z′ 6=z′i

P (x′|x)P (z′|z0)J(x′, z′,W ∗
x′z′(x, z0, ṽ))+

P (x′i|x)P (z′i|z0)J
x′i, z′i, v − ∑

x′ 6=x′i

∑
z′ 6=z′i

P (x′|x)P (z′|z0)W ∗
x′z′(x, z0, ṽ)

 ,
where W ∗

x′z′(x, z0, ṽ) = arg maxM(x, z0, ṽ). M̃ is similar to M , specifically,

feasibility is imposed in both functions and they are equal at ṽ, M̃(x, z0, ṽ) =

M(x, z0, ṽ). However, M̃ uses the optimal strategy from point ṽ at a point v,

such that it is always weakly below M , M̃(x, z0, v) ≤M(x, z0, v). The function
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M̃ is also concave and continuously differentiable in v because v only appears

in the last term and J is concave and differentiable in v. Hence, the Benveniste-

Scheinkman Lemma allows for the conclusion that the function M(x, z0, v)

is differentiable in v. Since the right hand side of the free entry condition

q(θ(x, v)) = k

M(x, z0, v) is differentiable in v (and q is differentiable in θ), so is

θ(x, v). Finally, from the assumption that p(θ) is C2 it must be that p(θ(x, v))

is differentiable in v.

Second, differentiability of p(θ(x,m)) in m carries over to differentiability

of p̂(x,W ) ≡ p(θ(x,m(x,W ))) in W . The function m(x,W ) is increasing and

continuous in W , see Lemma W4. Lebesgue’s Theorem for the differentiability

of monotone functions states that a monotone function is differentiable almost

everywhere. For the points of Lebesgue measure zero that are not differentiable

W̃ , use either the left or right differential of m at W̃ or the Gâteaux derivative,

which exists everywhere due to Lipschitz continuity of m. To conclude, p̂(x,W )

is differentiable (almost everywhere) because p is differentiable in m, which in

turn is differentiable (almost everywhere) in W .

W1.2 Existence of equilibrium

We show the existence of a recursive search equilibrium with firm-level shocks,

worker shocks and effort on the job, closely following Menzio and Shi (2010) and

Tsuyuhara (2016). The procedure aims at showing that the Bellman operator

maps the set of firms’ value functions, J, into itself.

Lemma W7 (Continuity of θ in J). Consider two arbitrary functions Jm, Jn ∈

J. Let θj(x, v) be the market tightness function implied by Jj for j = m,n. For

any ρ > 0, if ‖Jm − Jn‖ < ρ then ‖θm − θn‖ < εθρ where εθ ≡ −BJ

q′(θ)kBJ

.

Proof of Lemma W7. Let v be an arbitrary point in V. From the boundedness
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property (J1) of the set J, it follows that

Jn
(
v +B−1

J ρ
)
− Jn(v) ≤ −ρ ⇒ Jn(v)− ρ ≥ Jn

(
v +B−1

J ρ
)
.

The same property of J is exploited to show that

Jn (v)− Jn
(
v −B−1

J ρ
)
≤ −ρ ⇒ Jn(v) + ρ ≤ Jn

(
v −B−1

J ρ
)
.

These observations and ||Jm − Jn|| < ρ imply

Jm(v) < Jn(v) + ρ ≤ Jn
(
v −B−1

J ρ
)

Jm(v) > Jn(v)− ρ ≥ Jn
(
v +B−1

J ρ
)
.

The definition of market tightness and the first line lead to θm(x, v) ≤ θn
(
x, v −B−1

J ρ
)
.

Similarly, from the second line in the above result, it follows that θm(x, v) ≥

θn
(
x, v +B−1

J ρ
)
. Hence,

θm(x, v)− θn(x, v) < θn
(
x, v −B−1

J ρ
)
− θn(x, v) ≤ εθρ

θm(x, v)− θn(x, v) > θn
(
x, v +B−1

J ρ
)
− θn(x, v) ≥ −εθρ

with εθ ≡ −BJ

q′(θ)kBJ

. Thus, |θm(x, v)− θn(x, v)| < εθρ. Since this result holds for

all (x, z, v) ∈ S× V, we conclude that ‖θm − θn‖ < εθρ.

Recall the return to search Dm(x,W ) ≡ maxv′∈V p (θm(x, v′)) (v′−W ), which

is maximized by the unique search policy function m(x,W ) with m : X×V→ V.

In Appendix W1.1 it was shown that D is a decreasing function in W and that

m is increasing in W . Further, we use p̂(x,W ) ≡ p(θ(x,m(x,W ))) as the

composite job finding function.

Lemma W8 (Continuity of D in J). Consider Jm, Jn ∈ J. Let Dj(x,W ) be

the worker value of searching implied by Jj for j = m,n. If ||Jm−Jn|| < ρ then

‖Dm −Dn‖ < εDρ where εD ≡ εθp
′(0)(v − v).

Proof of Lemma W8. Let ρ ∈ R++ be an arbitrary number. Consider arbitrary
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functions Jm, Jn ∈ J such that ‖Jm − Jn‖ < ρ, and an arbitrary point (x,W ) ∈

X × V. Accordingly, we can construct the distance between Dm(x,W ) and

Dn(x,W ) using Lemma W7.

|Dm(x,W )−Dn(x,W )| ≤ max
v′∈V
| [p (θm(x, v′))− p (θn(x, v′))] (v′ −W ) |

≤
{

max
v′∈V
|p (θm(x, v′))− p (θn(x, v′))|

}{
max
v′∈V
|v′ −W |

}

≤
{

max
v′∈V

∣∣∣∣∣
ˆ θn(x,v′)

θm(x,v′)
p′(t)dt

∣∣∣∣∣
}

(v − v) < p′(0)εθ(v − v)ρ,

where θj denotes the market tightness function computed with Jj. Since this

holds for all (x,W ) ∈ X × V, we can conclude that ‖Dm −Dn‖ < εDρ with

εD = p′(0)εθ(v − v).

Lemma W9 (Continuity of p̂ in J). Consider Jm, Jn ∈ J. Let p̂j(x,W ) be the

composite transition function implied by Jj for j = m,n. If ||Jm − Jn|| < ρ

then ||p̂m − p̂n|| < εp(ρ) where εp(ρ) = max{2Bpρ
1/2 + p′(0)εθρ, 2εDρ1/2} and

Bp = −p′(0)Bj/(kq′(θ)). In addition εp(ρ)→ 0 as ρ→ 0.

Proof of Lemma W9. Let ρ ∈ R++ be an arbitrary number. Consider arbi-

trary functions Jm, Jn ∈ J such that ‖Jm − Jn‖ < ρ, and an arbitrary point

(x,W ) ∈ X×V. Without loss of generality, assume that mn(x,W ) ≤ mm(x,W ),

where mj is computed with θj and associated with Jj. In the proof consider

three mutually exclusive cases and drop the (x,W ) arguments from mn and mm

for brevity.

Case 1: p(θn(x,mn)) ≤ p(θm(x,mm)).

The distance between p(θm(x,mm)) and p(θn(x,mn)) is such that

(0 ≤) p(θm(x,mm))− p(θn(x,mn)) ≤ p(θm(x,mn))− p(θn(x,mn)) < p′(0)εθρ,

which exploits that p(θm(x, v)) is decreasing in v, mm ≥ mn and the bounds
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characterized in Lemma W7.

Case 2: p(θn(x,mn)) > p(θm(x,mm)) and mm − 2ρ1/2 ≤ mn ≤ mm.

Then:

(0 <) p(θn(x,mn))− p(θm(x,mm))

= p(θn(x,mn))− p(θn(x,mm)) + p(θn(x,mm))− p(θm(x,mm)) < 2Bpρ
1/2 + p′(0)εθρ,

which exploits Lemmas W7 and W5.

Case 3: p (θn (x,mn)) > p (θm (x,mm)) and mn < mm − 2ρ1/2 < mm.

First, note that mn ≥ W , as

mn


∈ (W, ṽn) if W < ṽn

= W otherwise.

As a result, we can write that mm > W + ρ1/2. Otherwise, if mm ≤ W + ρ1/2,

then mn < W −ρ1/2 < W , which is a contradiction. Similarly, mm > W implies

that mm < ṽm.

Note that p(θm(x,mm))(mm −W ) ≥ p(θm(x,mm − ρ1/2))(mm − ρ1/2 −W ),

because mm is the optimal search decision when J = Jm. Therefore, we have

p(θm(x,mm))ρ1/2 ≥
[
p(θm(x,mm − ρ1/2))− p(θm(x,mm))

]
(mm − ρ1/2 −W )

≥
[
p(θm(x,mn))− p(θm(x,mn + ρ1/2))

]
(mm − ρ1/2 −W )

≥
[
p(θm(x,mn))− p(θm(x,mn + ρ1/2))

]
(mn + ρ1/2 −W ).

To obtain the second inequality we use the facts that p(θm(x, v)) is concave in

v for all v ∈ [v, ṽm] , that mn + ρ1/2 < mm < ṽm and that mm − ρ1/2 −W > 0.

To obtain the third inequality, consider that mn + ρ1/2 < mm − ρ1/2 and that

p(θm(x,mn))− p(θm(x,mn + ρ1/2)) > 0.

Further, note that p(θn(x,mn))(mn−W ) is greater than p(θn(x,mn+ρ1/2))(mn+
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ρ1/2 −W ). Then:

p(θn(x,mn))ρ1/2 ≤
[
p(θn(x,mn))− p(θn(x,mn + ρ1/2))

]
(mn + ρ1/2 −W ).

Subtracting this inequality from the previous result, dividing by ρ1/2, and then

applying Lemma W8 gives:

0 < p(θn(x,mn))− p(θm(x,mm))

≤ ρ−1/2
[
p(θn(x,mn))− p(θm(x,mn)) + p(θm(x,mn + ρ1/2))− p(θn(x,mn + ρ1/2)

]
× (mn + ρ1/2 −W ))

< 2p′(0)εθρ1/2(v − v) = 2εDρ1/2.

Therefore, it can be established that the distance between p(θn(x,mn)) and

p(θm(x,mm)) is such that

|p(θn(x,mn))− p(θm(x,mm))| < max
{

2Bpρ
1/2 + p′(0)εθρ, 2εDρ1/2

}
≡ εp(ρ).

The ρ1/2 term implies that limρ→0 εp(ρ) = 0. Since this result holds for all

(x,W ) ∈ X× V, we conclude that ‖p̂m − p̂n‖ < εp(ρ).

Lemma W10 (Continuity of U in J). Consider Jm, Jn ∈ J. Let Uj be the

worker unemployment value function implied by Jj for j = m,n. If ||Jm−Jn|| <

ρ then ||Um − Un|| < εUρ, where εU ≡ βεD/(1− β).

Proof of Lemma W10. Let ρ ∈ R++ be an arbitrary number. Consider arbitrary

functions Jm, Jn ∈ J such that ‖Jm − Jn‖ < ρ. For an arbitrary point x ∈ X,
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the distance between Um(x) and Un(x) is

|Um(x)− Un(x)| =|[b(x) + βEx′Um(x′) +Dm(x′, Um(x′))]−

[b(x) + βEx′Un(x′) +Dn(x′, Un(x′))]|

≤βEx′
{
| [Um(x′) +Dm(x′, Um(x′))]− [Un(x′) + maxDm(x′, Un(x′))] |

+ |Dm(x′, Un(x′))−Dn(x′, Un(x′))|
}

<β ‖Um − Un‖+ βεDρ

To obtain the second inequality, we use that the distance between Um+Dm(Um)

and Un + Dm(Un) is smaller than the distance between Um and Un. Since this

result holds for all x ∈ X,

‖Um − Un‖ < β ‖Um − Un‖+ βεDρ ⇒ ‖Um − Un‖ <
β

1− β εDρ,

which delivers the result.

Lemma W11 (Bounding worker effort 1: Continuity of Ω in J). Consider

Jm, Jn ∈ J. Let Ωj(x,W ) = W + κDj(x,W ) − Ex′ [Uj(x′)|x] be the function

implied by Jj for j = m,n. If ||Jm − Jn|| < ρ then ||Ωm − Ωn|| < εΩρ, where

εΩ ≡ κεD + εU .

Proof of Lemma W11.

|Ωm(x,W )− Ωn(x,W )| = |κ (Dm(x,W )−Dn(x,W ))− Ex′ (Um(x′)− Un(x′))|

= |κ (Dm(x,W )−Dn(x,W )) + Ex′ (Un(x′)− Um(x′))|

< (κεD + εU) ρ ≡ εΩρ

which delivers the result.

Lemma W12 (Bounding worker effort 2: Continuity of e∗ in J). Consider

Jm, Jn ∈ J. Let e∗j(x,W ) = ∆(Ωj(x,W )) be the worker optimal effort function
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implied by Jj for j = m,n. If ||Jm − Jn|| < ρ then ||e∗m − e∗n|| < εeρ, where

εe = ∆′εΩ.

Proof of Lemma W12. The optimization problem for the worker EQ-W leads

to the first order condition for effort given by

−c′(e∗(x,Wi))− βδ′(e∗(x,Wi))Ω(x,Wi) = 0.

Using the implicit function theorem, it follows that the derivative of e∗i with

respect to Wi is

e∗′(x,Wi) = − −βδ′(e∗i )Ω′(x,Wi)
−c′′(e∗i )− βδ′′(e∗i )Ω(x,Wi)

= −β(δ′(e∗i ))2

c′′(e∗i )δ′(e∗i ) + c′(e∗i )δ′′(e∗i )︸ ︷︷ ︸
≡∆′

Ω′(x,Wi),

where ∆(Ω(x,Wi))) is the implicitly defined function for optimal effort. From

the assumptions δ′ ∈ [δ′, 0), δ(·)′′ ≤ 0 and c′ ∈ [0, c′] and the fact that c(·) is

convex, the numerator is negative and bounded and the denominator is negative.

Therefore, ∆′ is positive and bounded by ∆′ ≡ | sup ∆′(·)|. Now, continuity of

effort e∗i in J can be established as follows:

|e∗m(x,Wi)− e∗n(x,Wi)| = |∆ (Ωm(x,Wi))−∆ (Ωn(x,Wi))|

≤ ∆′ |Ωm(x,Wi)− Ωn(x,Wi)|

< ∆′εΩρ ≡ εeρ.

Since this holds for all x ∈ X it can be concluded that ||e∗m − e∗n|| < εeρ.
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Moving forward we define J̃ , an update of the firm’s value function J , as:

J̃(x, z, V ) = max
πi,wi,Wi,Wix′z′

∑
i=1,2

πi

(
f(x, z)− wi + βp̃(x,Wi)Ex′z′ {J(x′, z′,Wix′z′)|x, z}

)

s.t.
∑
i=1,2

πi

(
u(wi) + r̃(x,Wi)

)
= V

Wi = Ex′z′ {Wix′z′ |x, z} ,
∑
i=1,2

πi = 1.

It can also be expressed as J̃(x, z, V ) = (TJ)(x, z, V ) using the operator T .

Next, let F (γ, x, z, V ) be the objective function of the reduced problem:

F (γ, x, z, V ) =
∑
i=1,2

πi

(
f(x, z)− wi + βp̃(x,Wi)Ex′z′ {J(x′, z′,Wix′z′)|x, z}

)

s.t. wi =


u−1

(
V − πj[u(wj) + r̃(x,Wj)]

πi
− r̃(x,Wi)

)
if πi 6= 0

u−1 (V − r̃(x,Wi)) else,

where γ ∈ Γ denotes the tuple ({πi,Wi,Wix′z′}i=1,2) and Γ is defined as the

set of γ’s such that πi ∈ [0, 1], π1 + π2 = 1,Wi ∈ V,Wix′z′ : S → V, and

Wi = Ex′z′ {Wix′z′ |x, z}. Finally, γ∗(x, z, V ) is the optimal solution such that

J̃(x, z, V ) = max
γ∈Γ

F (γ(x, z, V ), x, z, V ) = F (γ∗, x, z, V ).

Lemma W13 (Operator is self-mapping). The Bellman operator is self-mapping,

i.e. the image J̃ of J ∈ J also belongs to the set J.

Proof of Lemma W13. We need to show that the image through the Bellman

operator satisfies the 4 properties of J. Denote F ′(γ, x, z, V ) as the derivative

of F (γ, x, z, V ) with respect to V . It is straightforward to show that

F ′(γ, x, z, V ) = − 1
u′(wi)

∈
[
− 1
u′
,− 1

u′

]
.
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Condition 1: J̃ is bi-Lipschitz continuous in V .

Let (x, z) be an arbitrary point in S and let V1, V2 ∈ V be two arbitrary points

with V1 ≤ V2.∣∣∣J̃ (x, z, V2)− J̃ (x, z, V1)
∣∣∣ ≤ max

γ∈Γ
|F (γ, x, z, V2)− F (γ, x, z, V1)|

≤ max
γ∈Γ

∣∣∣∣∣
ˆ V2

V1

F ′(γ, x, z, t) dt
∣∣∣∣∣

≤ max
γ∈Γ

ˆ V2

V1

|F ′(γ, x, z, t)| dt ≤ |V2 − V1| /u′

The first inequality uses the fact that one could potentially find another γ that

increases the distance. The expression implies that the function J̃ is Lipschitz

continuous in V and differentiable almost everywhere. The function F is dif-

ferentiable with respect to V . Therefore, at any point of differentiability, the

derivative of J̃ with respect to V is equal to F ′(γ∗(x, z, V ), x, z, V ). From these

properties of J̃ , it follows that

J̃ (x, z, V2)−J̃ (x, z, V1) =
ˆ V2

V1

F ′ (γ∗(x, z, t), x, z, t) dt ∈
[
−V2 − V1

u′
,−V2 − V1

u′

]

Therefore, J̃ is bi-Lipschitz continuous.

Condition 2: J̃ is bounded.

Let (x, z, V ) be an arbitrary point in S× V. The value J̃(x, z, V ) is such that

J̃(x, z, V ) ≤ f(x, z)− u−1(v + c(e)− βv) + βJ ≤ J,

where we simply use the bounds on each of the terms. For the lower bound, let

γ0 denote the tuple ({πi,0,Wi,0,Wix′z′,0}i=1,2) such that π1,0 = 0, π2,0 = 1,Wi,0 =

Wix′z′,0 = v, and observe that

J̃(x, z, V ) ≥ F (γ0, x, z, V ) ≥ f(x, z)− u−1(v + c(e)− βv) + βJ ≥ J,

where the first inequality makes use of the fact that γ0 ∈ Γ, and the second
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inequality makes use of the bounds on x, z, v, e and J .

Condition 3: J̃ is concave.

This is a direct implication of the presence of the lottery. Let V1 and V2 be two

arbitrary values in [v, v], and let Vα = αV1 + (1 − α)V2, where α ∈ (0, 1). One

can show that J (Vα) ≥ αJ (V1) + (1− α)J (V2).

Condition 4: J̃ is differentiable.

From above, J̃(x, z, V ) is decreasing in V because an increase in V tightens the

promise-keeping constraint, concave with respect to V by construction because

of the two-point lottery over promised expected values, continuous and differ-

entiable almost everywhere. To show that J̃ is differentiable everywhere, we

adapt the derivation steps presented in Koeppl (2006)1 to the one-sided com-

mitment model of this paper. Suppose for a fixed (x, z), there is a point Ṽ where

J̃(x, z, Ṽ ) is not differentiable and call (π̃i, w̃, W̃i, W̃ix′z′) the firm’s optimal ac-

tion at that point. This action is by definition feasible and delivers Ṽ to the

worker. Next, consider a strategy that delivers any V around Ṽ by changing the

wage to w∗(V ) ≡ u−1(V − Ṽ +u(w̃)) while the remaining actions (π̃i, W̃i, W̃ix′z′)

stay the same. We define the function Ĵ(x, z, V ) as the value that uses strategy

(π̃i, w∗(V ), W̃ix′z′ , W̃i), which is also feasible by construction. Then, by defini-

tion of J̃ it must be that Ĵ(x, z, V ) ≤ J̃(x, z, V ) and Ĵ(x, z, Ṽ ) = J̃(x, z, Ṽ ).

Next, since u(·) is concave, increasing and twice differentiable, −u−1(·) is also

concave and twice differentiable. Moreover, V enters Ĵ(x, z, V ) only through

−w∗(V ) and so Ĵ(x, z, V ) inherits concavity and differentiability from the utility

function at any point V , including Ṽ . Finally, since Ĵ is a function that is

concave, continuously differentiable, lower than J̃ and equal to J̃ at Ṽ we can
1Koeppl (2006) shows that with two-sided limited commitment it is sufficient to have one

state realization where neither participation constraint binds to achieve differentiability of the
Pareto frontier.
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apply Lemma 1 from Benveniste and Scheinkman (1979), which reveals that

J̃(x, z, V ) is differentiable at Ṽ . Consequently, J̃ is differentiable everywhere.

Lemma W14 (Continuity of the operator). Consider Jm, Jn ∈ J. Let J̃j(x, z, V )

be the firm’s value mapping implied by Jj for j = m,n. If ||Jm − Jn|| < ρ, then

||J̃m − J̃n|| < εT (ρ).

Proof of Lemma W14. Let Fj(γj, x, z, V ) be the objective function of the firm’s

optimal contracting problem implied by Jj. Consider Jm, Jn ∈ J such that

||Jm − Jn|| < ρ. Take V ∈ V such that J̃m(x, z, V ) − J̃n(x, z, V ) > 0. Let

γ∗j (x, z, V ) be the maximizer of Fj(γj, x, z, V ) and wj(γ) be the wage function

given by Jj. Then, dropping the arguments of γ∗j for brevity:

0 ≤ |J̃m(x, z, V )− J̃n(x, z, V )|

= |Fm(γ∗m, x, z, V )− Fn(γ∗n, x, z, V )|

≤ |Fm(γ∗m, x, z, V )− Fn(γ∗m, x, z, V )|

≤ | − wm(γ∗m) +
∑
i=1,2

πi,m{f(x, z) + βp̃m(x,Wi,m))Ex′z′ [Jm(x′, z′,Wix′z′,m)|x, z]}

+ wn(γ∗m)−
∑
i=1,2

πi,m{f(x, z) + βp̃n(x,Wi,m))Ex′z′ [Jn(x′, z′,Wix′z′,m)|x, z]}|

≤ |wm(γ∗m)− wn(γ∗m)|

+
∑
i=1,2

πi,m|{f(x, z) + βp̃m(x,Wi,m))Ex′z′ [Jm(x′, z′,Wix′z′,m)|x, z]}

− {f(x, z) + βp̃n(x,Wi,m))Ex′z′ [Jn(x′, z′,Wix′z′,m)|x, z]}|.

The objective is to estimate a bound for |J̃m(x, z, V )−J̃n(x, z, V )| by looking

at each part of the last expression separately as follows.

(1) Consider |wm(γ∗m)−wn(γ∗m)| first. Since utility u is a strictly concave func-

tion, for any w1 and w2, |w1 − w2|u′ < |u(w1) − u(w2)| where u′ is the smaller
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of u′(w1) and u′(w2). By definition,

u(wm(γ∗m)) =V −
∑
i=1,2

πir̃(x,Wi,m)

=V − βEx′ [Um(x′)|x]

−
∑
i=1,2

πi,m[−c(em(x,Wi,m)) + β(1− δ(em(x,Wi,m)))Ωm(x,Wi,m)]

and

u(wn(γ∗m)) =V − βEx′ [Un(x′)|x]

−
∑
i=1,2

πi,m[−c(en(x,Wi,m)) + β(1− δ(en(x,Wi,m)))Ωn(x,Wi,m)].

Therefore, we can express the distance as

|u(wm(γ∗m))− u(wn(γ∗m))|

≤ β|Um − Un|+
∑
i=1,2

πi,m[|c(em(x,Wi,m))− c(em(x,Wi,m))|

+ β|(1− δ(em(x,Wi,m)))Ωm(x,Wi,m)− (1− δ(en(x,Wi,m)))Ωn(x,Wi,m)|].

|Um − Un| is bounded by εU . The last term is also bounded due to:

|(1− δ(em(x,Wi,m)))Ωm(x,Wi,m)− (1− δ(en(x,Wi,m)))Ωn(x,Wi,m)|

≤ |(1− δ(em(x,Wi,m)))Ωm(x,Wi,m)− (1− δ(en(x,Wi,m)))Ωm(x,Wi,m)|

+ |(1− δ(en(x,Wi,m)))Ωm(x,Wi,m)− (1− δ(en(x,Wi,m)))Ωn(x,Wi,m)|

≤ |(1− δ(em(x,Wi,m)))− (1− δ(en(x,Wi,m)))|v

+ (1− δ(en(x,Wi,m)))|Ωm(x,Wi,m)− Ωn(x,Wi,m)|

≤ −δ′|em(x,Wi,m)− en(x,Wi,m)|v + |Ωm(x,Wi,m)− Ωn(x,Wi,m)|

≤ (−δ′εev + εΩ)ρ,

using the fact that Ω(·) cannot exceed v. Collecting bounds yields:

|u(wm(γ∗m))− u(wn(γ∗m))| ≤ (βεU + c′εe + β(−δ′εev + εΩ))ρ.
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So, from the property of concave functions, the first term is bounded by:

|wm(γ∗m)− wn(γ∗m)| ≤ u′−1 · (βεU + c′εe + β(−δ′εev + εΩ))ρ.

(2) Next, consider the following term:
∑
i=1,2

πi,m|{f(x, z) + βp̃m(x,Wi,m))Ex′z′ [Jm(x′, z′,Wix′z′,m)|x, z]}

− {f(x, z) + βp̃n(x,Wi,m))Ex′z′ [Jn(x′, z′,Wix′z′,m)|x, z]}|

This expression can be divided into two sub-components stemming from sub-

stituting in p̃. Similarly to above, the bound for each sub-component can be

found as follows. The first subcomponent can be bounded directly:

|(1− δ(em(x,Wi,m)))Jm(Wi,m)− (1− δ(en(x,Wi,m)))Jn(Wi,m)|

≤ |(1− δ(em(x,Wi,m)))Jm(Wi,m)− (1− δ(en(x,Wi,m)))Jm(Wi,m)|

+ |(1− δ(en(x,Wi,m)))Jm(Wi,m)− (1− δ(en(x,Wi,m)))Jn(Wi,m)|

= |(1− δ(em(x,Wi,m)))− (1− δ(en(x,Wi,m)))|Jm(Wi,m)

+ (1− δ(en(x,Wi,m)))|Jm(Wi,m)− Jn(Wi,m)|

≤ −δ′|em(x,Wi,m)− en(x,Wi,m)|J + |Jm(Wi,m)− Jn(Wi,m)|

≤ (−δ′εeJ + 1)ρ.

Then note that:

|p̂m(x,Wi,m)Jm(Wi,m)− p̂n(x,Wi,m)Jn(Wi,m)|

≤ |p̂m(x,Wi,m)Jm(Wi,m)− p̂n(x,Wi,m)Jm(Wi,m)|

+ |p̂n(x,Wi,m)Jm(Wi,m)− p̂n(x,Wi,m)Jn(Wi,m)|

= |p̂m(x,Wi,m)− p̂n(x,Wi,m)|Jm(Wi,m) + p̂n(x,Wi,m)|Jm(Wi,m)− Jn(Wi,m)|

≤ εp(ρ)J̄ + ρ,
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which is used to find the bounds of the second sub-component:

|(1− δ(em(x,Wi,m)))p̂m(x,Wi,m)Jm(Wi,m)− (1− δ(en(x,Wi,m)))p̂n(x,Wi,m)Jn(Wi,m)|

≤ |(1− δ(em(x,Wi,m)))p̂m(x,Wi,m)Jm(Wi,m)− (1− δ(en(x,Wi,m)))p̂m(x,Wi,m)Jm(Wi,m)|

+ |(1− δ(en(x,Wi,m)))p̂m(x,Wi,m)Jm(Wi,m)− (1− δ(en(x,Wi,m)))p̂n(x,Wi,m)Jn(Wi,m)|

= |(1− δ(em(x,Wi,m)))− (1− δ(en(x,Wi,m)))|p̂m(x,Wi,m)Jm(Wi,m)

+ (1− δ(en(x,Wi,m)))|p̂m(x,Wi,m)Jm(Wi,m)− p̂n(x,Wi,m)Jn(Wi,m)|

≤ (−δ′εeJ + 1)ρ+ εp(ρ)J.

Collecting the inequalities from (1) and (2), the overall bound is given by:

|J̃m(x, z, V )− J̃n(x, z, V )|

≤ u′−1 · (βεU + c′εe + β(εΩ − δ′εev))ρ

+ β(1 + κ)(1− δ′εeJ)ρ+ βκεp(p)J̄

≡ εT (ρ).

Hence, the operator T is continuous.

Proof of Proposition 1. First, fix an arbitrary ε ∈ R++. Let ρε be the unique

positive solution for ρ of the equation

εT (ρ) = ε

∀ Jm, Jn ∈ J such that ‖Jm − Jn‖ < ρε. Lemma W14 implies that ‖TJm − TJn‖ <

ε, which means that the equilibrium operator T is continuous. Next, let ρx and

ρz denote the minimum distance between distinct elements associated with the

sets X and Z, respectively. Also, let ‖ · ‖E denote the standard norm on the Eu-

clidean space S×V. Let ρ̃ε = min {u′ε, ρx, ρz}. For all (x1, z1, V1) , (x2, z2, V2) ∈

S × V such that ‖(x2, z2, V2)− (x1, z1, V1)‖E < ρ̃ε and for all J ∈ J, Lemma

W13 implies that TJ satisfies the property (J1) of the set J and, consequently,
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|(TJ) (x2, z2, V2)− (TJ) (x1, z1, V1)| < ε. Hence, the family of functions T (J)

is equicontinuous. The lemma also implies that the Bellman operator is self-

mapping.

From these properties, it follows that the equilibrium operator T satisfies

the conditions of Schauder’s fixed point theorem (Stokey, Lucas, and Prescott

(1989), Theorem 17.4). Therefore, there exists a value function J∗ ∈ J for the

firm such that TJ∗ = J∗. Let θ∗ denote the market tightness function computed

with J∗, which then gives rise to vacancy value and mass functions Π∗ and φ∗,

respectively. J∗ and θ∗ pin down the active job distribution h∗, a worker reten-

tion probability p̃∗ and a search return function denoted by r̃∗. Denote as U∗

the unemployment value function computed with θ∗ and let µ∗ be the associated

mass of unemployed workers. Let ξ∗ denote the contract policy function com-

puted with J∗, θ∗, p̃∗ and U∗. The functions {J∗, θ∗, p̃∗, r̃∗, U∗,Π∗, h∗, φ∗, µ∗, ξ∗}

satisfy the conditions in the definition of the recursive search equilibrium.

W2 Identification web appendix
In this supplementary appendix, we show how properties of the theoretical

model map into conditional independence restrictions that can be used to de-

velop a non-parametric identification argument. In a nutshell, there are four

important features that can be used. First, coworker trajectories are indepen-

dent of each other conditional on the firm shock. Second, the way that workers’

lifetime utility and the productivity processes evolve together form a Markov-

switching model as described in Hu and Shum (2012). Third, in the absence

of flat regions in the Pareto frontier, the value of the worker maps into the

wage one-for-one. Finally, monotonicity of the target wage allows labeling the

unobserved states of firm productivity.

Our strategy consists of the following steps. To start, we describe the model’s
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data counterpart. Next, we show how the restrictions of the model help identify

the law of motion of the wage as well as the laws of motion of firm and worker

productivities. The conditional choice probabilities together with the Bellman

equation allow us to then recover the structural parameters of the model. This

procedure has the flavor of the two-step approach of Hotz and Miller (1993),

recovering the conditional choice probabilities before finding the structural pa-

rameters. All proofs are deferred to the last subsection.

W2.1 Data

Consider a worker i observed over T periods. Call Xit ∈ {1, ..., nx} his unob-

servable ability and Zit ∈ {1, ..., nz} his firm level match quality if employed,

with Zit=0 if not employed. Yit denotes the wage and is set to Yit=0 for an

unemployed worker. We call Mit the mobility realization between t−1 and t,

where Mit=0 if the worker stays in the same firm, Mit=1 if the worker moves to

a new firm, Mit=2 for transitions into unemployment, Mit=3 for transitions out

of unemployment, and finally, Mit=4 if an unemployed worker remains unem-

ployed. Note that the timing implies that a separation in the current period is

reflected in Mt+1, not Mt, which is natural given the timing in the model where

the wage is collected before separation.

We supplement data on individual i with information about K coworkers

who joined the firm at the same time as worker i (potentially multiple periods

in the past) and index them by k(i, t). Their wages are denoted Y c
ikt, where

Y c
ikt=0 if the coworker became unemployed. For an unemployed worker i we

consider the coworkers of the last employer. Our data is then formed from a

random sample of sequences of the form {Yit,Mit, Y
c
i1t, ..., Y

c
iKt}i=1,...,N,t=1,...,T .

W2.2 Identifying the choice probabilities

The first goal is to show that the structure of the model can be used to iden-

tify Pr[Yit+1,Mit+1|Yit, X̃it, Zit] as well as Pr[Zit+1|Zit] and Pr[X̃it+1|X̃it] from
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the observed joint density of {Yit,Mit, Y
c
i1t, ..., Y

c
iKt}i=1,...,N,t=1,...,T . To improve

readability, we denote Sit ≡ (Yit,Mit) and think of Yit as a discrete outcome.2

Let K=2 and T=4, which is sufficient for identification. Consider individuals

who joined an employer in period 1 and stay there for at least two periods, i.e.

condition on the mobility set M̄i ≡ 1{Mi1 ∈ {1, 3}} · 1{Mi2=0}. Furthermore,

we introduce Hi2 ≡ (Zi1, Zi2) and Hi3 ≡ (Zi1, Zi2, Zi3) as the sequence of realized

Zit in the firm that worker i and all coworkers joined at t = 1. H̃it denotes the

same sequences up to a permutation.

In Lemma W15 we recover individual-specific wage and mobility dis-

tributions jointly with the sequence of firm shocks captured by H̃i3,

Pr[Si1, Si2, Si3, Si4, H̃i3|M̄i=1]. The proof relies on the property of the model

that conditional on the sequence of shocks H̃i3, the realizations of wages of all

coworkers are independent of each other because all common shocks must be

firm shocks.3 This conditional independence structure allows us to apply the

result for discrete mixtures in Hall and Zhou (2003).

Lemma W16 uses the Markovian property of the contract to recover

Pr[Si3|Si2, X̃i2, H̃i3, M̄i=1] from Pr[Si1, Si2, Si3, Si4, H̃i3|M̄i=1] for a permuta-

tion X̃i2 of Xi2, which is (s3, s2, h3)-specific. The proof closely follows Hu and

Shum (2012) on the identification of a Markov-switching model. Since the

productivity process is independent of the wage process and match quality re-

alization, the condition of “limited feedback” required in the original paper is

satisfied. Additionally, we adopt a non-primitive rank condition on the law of

motion of wages.

Lemma W17 and Lemma W18 provide rank conditions sufficient to label Xi2

across values of (s3, s2, h3). These conditions require sufficient variation in Si4

2Using continuous outcomes requires changing the rank condition into a linear indepen-
dence requirement of the marginal distributions, see Allman, Matias, and Rhodes (2009)
Theorem 8.

3Here we can use the Zit sequence directly, rather than the νt sequence, since different
coworkers started in the same period, and hence share the exact same Zit history.
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and Si1 across values of Xi2. Once Xi2 is consistently labeled, monotonicity of

the target wage w∗(x, z) in z can be used to label and order the values of Zi2 in

each H̃i3 history, see Lemma W19. In addition, under the assumption of diag-

onal dominance of the transition matrix, we recover Pr[Zi3|Zi2]. Lemma W20

uses the identified Pr[Si3|Si2, X̃i2, H̃i3, M̄i=1] to recover Pr[X̃i3|X̃i2]. At this

point, we know Pr[Yi3,Mi3|Yi2, X̃i2, Zi2], Pr[Zi3|Zi2] and Pr[X̃i3|X̃i2] for a com-

mon permutation of Xi2 and Yi2>0. Since the model is stationary, this delivers

Pr[Yi,t+1,Mi,t+1|Yit, X̃it, Zit] for Yit>0 and the laws of motion Pr[Zi,t+1|Zit] and

Pr[X̃i,t+1|X̃it] in Lemma W21.

W2.3 Identifying the model parameters

After identifying the transition probabilities in the previous section, we are

interested in recovering the structural parameters of the model, in particular

f(x, z). Lemma W22 shows that the present value of the worker V (x, z, w) at

each state (x, z, w) is uniquely defined from the transition probabilities. One

complication of reconstructing this present value is to express the continuation

value at job losses because we don’t want to assume that the flow value of

unemployment b(x) is observed. To overcome this, we use the fact that workers

who are indifferent between working and not working exert zero effort, and so

their probability of quitting approaches one. Conditioning on δ∗ ' 1, a worker’s

continuation value at the job is thus identical to the value of being unemployed.

Another difficulty is to reconstruct the value v∗1 that the worker gets after a J2J

transition. This however can be addressed by using the present value conditional

on moving.

Recovering the production function f(x, z) is achieved in Lemma W23 based

on the property of the optimal contract that J ′(x, z, V ) = 1
u′(w) . Using V (x, z, w)

from Lemma W22, we can integrate the first order condition to get J(x, z, V )

up to a (x, z)-specific constant. This intercept is pinned down by the residual
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claimant wage w∗(x, z), for which the expected profit of the firm equals zero.

One could ask if additional information would be able to discipline the two

functions u(·) and c(·). We show that even in the case where c(·) is not known,

V (x, z, w) can take the form of a Volterra integral equation of the second kind

with a unique solution under very mild conditions. As for the utility function

u(·), we note that an overall measure of passthrough from productivity to earn-

ings or an analysis similar to Guiso, Pistaferri, and Schivardi (2005) could help

measure the amount of risk aversion. We leave this for future research.

W2.4 Proofs

Lemma W15 (Firm shock history h). Pr[Si1, Si2, Si3, Si4, H̃i3|M̄i=1] is iden-

tified from the joint probability Pr[Si1, Si2, Si3, Si4, Y c
i11, ..., Y

c
i24 | M̄i=1], where

H̃i3 = σ(Hi3) for some permutation σ, under the assumptions of the structural

model and the following conditions:

i) Pr[Si1, Si2, Si3, Si4|Hi3, M̄i=1] and Pr[Y c
i,1,1, Y

c
i,1,2, Y

c
i,1,3, Y

c
i,1,4|Hi3, M̄i=1]

have rank nh=n3
z.

ii) There exists (y1, y2, y3, y4) and (y′1, y′2, y′3, y′4) such that for all values h3 of

Hi3 the following quantities are different:

Pr[Hi3=h3, Y
c
i21=y1, Y

c
i22=y2, Y

c
i23=y3, Y

c
i24=y4|M̄i=1]

Pr[Hi3=h3, Y c
i21=y′1, Y c

i22=y′2, Y c
i23=y′3, Y c

i24=y′4|M̄i=1]
.

Proof. We apply the identification result of mixtures, which depends on con-

ditional independence. In the model, the wage path of a given worker is a

function of the worker’s own shock sequence, but given the firm shock history,

individual-specific shocks are independent across coworkers. Hence, conditional

independence holds as long as we go far enough back to condition on the full

firm shock history shared between coworkers. For this reason we look at workers
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who enter in period 1 and write:

Pr[Si1, ..., Si4, Y c
i11, ..., Y

c
i24|M̄i=1]

=
∑
Hi3

Pr[Hi3|M̄i=1] · Pr[Si1, ..., Si4, Y c
i11, ..., Y

c
i24|Hi3, M̄i=1]

=
∑
Hi3

Pr[Hi3|M̄i=1] · Pr[Si1, ..., Si4|Hi3, M̄i=1]

×
(∏

k

Pr[Y c
ik1, ..., Y

c
ik4|Hi3, M̄i=1]

)
.

The objects of interest are Pr[Hi3|M̄i=1] and Pr[Si1, ..., Si4|Hi3, M̄i=1]. With

only two coworker observations we receive three independent measures of the

income sequence conditional on the sequence Hi3 = (Zi1, Zi2, Zi3).

For convenience we write y = (y1, y2, y3, y4) and s = (s1, s2, s3, s4) with

respective supports of size ny and ns and construct a matrix B(y), defined for

a fixed value y, with the following elements:[
B(y)

]
pq

= Pr[(Si1, ..., Si4) = sp, (Y c
i11, ..., Y

c
i14) = yq, (Y c

i21, ..., Y
c
i24) = y|M̄i=1].

We further define the following matrices of interest:[
LS|H3

]
pq

= Pr[(Si1, ..., Si4) = sp|Hi3 = hq, M̄i=1][
LY c

1 |H3

]
pq

= Pr[(Y c
i11, ..., Y

c
i14) = yp|Hi3 = hq, M̄i=1][

DY c
2 ,H3(y)

]
pq

= 1{p=q} · Pr[(Y c
i21, ..., Y

c
i24) = y, Hi3 = hq|M̄i=1].

Note that conditional mean independence gives:

B(y) = LS|H3DY c
2 ,H3(y)L′Y c

1 |H3 .

We then compute a singular value decomposition B(y′) = USV ′ where S is

a diagonal matrix with non-negative values of size nh × nh, U and V are of

size ns × nh and ny × nh. In addition U ′U and V ′V are the identity matrix of

size nh. This gives us that U ′B(y′)V , U ′LS|H3 , and L′Y c
1 |H3

V are full rank. We
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construct:

U ′B(y)V
(
U ′B(y′)V

)−1
= U ′LS|H3DY c

2 ,H3(y)L′Y c
1 |H3V

×
(
U ′LS|H3DY c

2 ,H3(y′)L′Y c
1 |H3V

)−1

= U ′LS|H3DY c
2 ,H3(y)DY c

2 ,H3(y′)−1
(
U ′LS|H3

)−1

So, the eigenvalue decomposition of U ′B(y)V
(
U ′B(y′)V

)−1
delivers U ′LS|H3 as

the eigenvectors. Since U is known from the SVD decomposition and condition

ii) guarantees that the eigenvalues are different, we find a unique LS|H3 up to a

normalization and a permutation. The notation H̃i3 captures the permutation.

The normalization is pinned down by the fact that LS|H3 is a density and hence

needs to sum to one. This gives us Pr[Si1, ..., Si4|H̃i3, M̄i=1].

A similar eigenvalue decomposition for
(
U ′B(y′)V

)−1
U ′B(y)V yields

LY c
1 |H3 and consequently DY c

2 ,H3(y). From there we compute:

Pr[H̃i3 = hq|M̄i=1] = Pr[(Y c
i21, ..., Y

c
i24)′ = y, H̃i3 = hq, M̄i=1]

Pr[(Y c
i21, ..., Y

c
i24)′ = y|H̃i3 = hq, M̄i=1]

= Pr[(Y c
i21, ..., Y

c
i24)′ = y, H̃i3 = hq, M̄i=1]

Pr[(Y c
i11, ..., Y

c
i14)′ = y|H̃i3 = hq, M̄i=1]

,

where the second equality uses the fact that coworkers are interchangeable.

Lemma W16 (Law of motion of s). Under the assump-

tions of the structural model and in the absence of flat regions

in the Pareto frontier, Pr[Si3=s3|Si2=s2, X̃i2=x, H̃i3=h3, M̄i=1],

Pr[Si4=s4|Si3=s3, X̃i2=x, H̃i3=h3, M̄i=1] and Pr[X̃i2|Si2, Si1, H̃i3, M̄i=1]

are identified for each (s3, s2, h3) with s2=(y2, 0) and all values (s4, x), where

X̃i2=σs3s2h3(Xi2) for an unknown permutation σs3s2h3, if:

i) The matrix A(s2, s3, h3) has rank nx, where each element is defined as

apq = Pr[Si1=sp, Si2=s2, Si3=s3, Si4=sq|H̃i3=h3].
ii) There exists (s′2, s′3) such that for all x2 and x′2 6=x2 we have
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λs2,s′2,s3,s′3
(x2) 6= λs2,s′2,s3,s′3

(x′2), where λs2,s′2,s3,s′3
(x2) is defined as:

λs2,s′2,s3,s′3
(x2) = Pr[Si3=s3|Si2=s2, Xi2=x2, H̃i3=h3, M̄i=1]

Pr[Si3=s′3|Si2=s2, Xi2=x2, H̃i3=h3, M̄i=1]

× Pr[Si3=s′3|Si2=s′2, Xi2=x2, H̃i3=h3, M̄i=1]
Pr[Si3=s3|Si2=s′2, Xi2=x2, H̃i3=h3, M̄i=1]

.

Proof. An implication of Lemma W15 is that Pr[Si4, Si3|Si2, Si1, H̃i3=h3, M̄i=1]

is identified. Below, we drop all i subscripts and the conditioning on H̃i3=h3

and M̄i=1 to increase readability. We also focus on the case where the number

of points of support in Sit is the same as the number of points of support

in Xit. This can be extended to allow for larger support for Sit by adding a

singular value decomposition as in Lemma W15. Such an extension, while being

straightforward, makes the notation more cumbersome and hence we omit it.

The first step is to manipulate Pr[S4, S3|S2, S1], following Hu and Shum
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(2012):

Pr[S4, S3|S2, S1]

=
∑
X2

∑
X1

Pr[S4, S3, X2, X1|S2, S1]

=
∑
X2

∑
X1

Pr[S4|S3, S2, S1, X2, X1] · Pr[S3, X2|S2, S1, X1] · Pr[X1|S2, S1]

=
∑
X2

∑
X1

Pr[S4|S3, X2] · Pr[S3, X2|S2, S1, X1] · Pr[X1|S2, S1]

=
∑
X2

∑
X1

Pr[S4|S3, X2] · Pr[S3|S2, S1, X2, X1] · Pr[X2|S2, S1, X1] · Pr[X1|S2, S1]

=
∑
X2

∑
X3

Pr[S4|S3, X2] · Pr[S3|S2, X2, X1] · Pr[X2|S2, S1, X1] · Pr[X1|S2, S1]

=
∑
X2

∑
X1

Pr[S4|S3, X2] · Pr[S3|S2, X2, X1] · Pr[X2, X1|S2, S1]

=
∑
X2

∑
X1

Pr[S4|S3, X2] · Pr[S3|S2, X2] · Pr[X2, X1|S2, S1]

=
∑
X2

Pr[S4|S3, X2] · Pr[S3|S2, X2] ·
∑
X1

Pr[X2, X1|S2, S1]

=
∑
X2

Pr[S4|S3, X2] · Pr[S3|S2, X2] · Pr[X2|S2, S1].

This manipulation relies on Pr[S4|S3, S2, S1, X2, X1] = Pr[S4|S3, X2], which

follows from the Markovian property of the contract where wt+1 is determined by

(xt, zt, Vt) together with the fact that, in the absence of flat regions of J(x, z, V ),

conditioning on the wage wt is equivalent to conditioning on Vt since 1
u′(wt) =

−J ′(xt, zt, Vt). Having the sequence of firm shocks in the conditioning set is

essential because without it, the contract would lose its Markovian structure.

The wage process is still Markovian if a worker moves between periods 2 and 3

or 3 and 4 because the underlying match quality is reset to z0 and hence there is

still no time dependence. The same argument applies to Pr[S3|S2, S1, X2, X1] =

Pr[S3|S2, X2, X1] and to the limited feedback property that allows us to use

Pr[S3|S2, X2, X1] = Pr[S3|S2, X2].4

4See Hu and Shum (2012) for a precise definition of limited feedback.

Model - Identification - Data - Estimation - References Page W31 of W56



In a second step, we continue by defining the following matrices:[
LS4,s3|s2,S1

]
pq

= Pr[S4=sp, S3=s3|S2=s2, S1=sq][
LS4|s3,X2

]
pq

= Pr[S4=sp|S3=s3, X2=sq][
LX2|s2,S1

]
pq

= Pr[X2=xp|S2=s2, S1=sq],

as well as a diagonal matrix Ds3|s2,X2 with elements:[
Ds3|s2,X2

]
pq

= 1{p=q} · Pr[S3=s3|S2=s2, X2=xp].

The result of the first step in terms of these matrices for (s1, s2, s
′
1, s
′
2) is:

LS4,s3|s2,S1 = LS4|s3,X2Ds3|s2,X2LX2|s2,S1 (2)

LS4,s′3|s2,S1 = LS4|s′3,X2Ds′3|s2,X2LX2|s2,S1

LS4,s′3|s
′
2,S1 = LS4|s′3,X2Ds′3|s

′
2,X2LX2|s′2,S1

LS4,s3|s′2,S1 = LS4|s3,X2Ds3|s′2,X2LX2|s′2,S1 .

Since assumption i) ensures that these matrices are invertible, we compute:

LS4,s3|y2,Y1L
−1
S4,s′3|y2,Y1

(
LS4,s′3|y

′
2,Y1L

−1
S4,s3|y′2,Y1

)
= LS4|s3,X2D̃L

−1
S4|s3,X2

,

where

D̃ = Ds3|y2,X2D
−1
s′3|y2,X2

Ds′3|y
′
2,X2D

−1
s3|y′2,X2

.

Hence, as long as the diagonal elements of D̃ are distinct, as guaranteed

by condition ii), the eigenvalue decomposition of the left hand side identifies

Pr[S4=s4|S3=s3, X̃2=x2] as eigenvectors up to a permutation of the values x2

that are specific to (s3, s
′
3, s2, s

′
2, H̃i3) and a scaling factor. The scaling factor is

pinned down by the fact that the probabilities have to sum to 1. In addition,

noting(
L−1
S4,s′3|s

′
2,S1

LS4,s′3|s2,S1

)−1
L−1
S4,s3|s′2,S1

LS4,s3|s2,S1 = L−1
X2|s2,S1

D̃LX2|s2,S1 ,

Model - Identification - Data - Estimation - References Page W32 of W56



this shows that the same ordering of eigenvalues delivers LX2|s2,S1 with the same

permutation of X2, i.e. Pr[X̃2|S2, S1]. Combining these as in equation (2) gives

Ds3|s2,X2 , which is our third object of interest Pr[S3|S2, X̃2].

Lemma W17 (Labeling x within h). For each history h3, we can align the

σs3s2h3(·) permutations of Xi2 across values of (s3, s2) if:

i) For each history h3 and any x2, x′2 6=x2 and s3, there exists s4 such that

Pr[Si4=s4|Si3=s3, Xi2=x2, H̃i3=h3, M̄i=1]

6= Pr[Si4=s4|Si3=s3, Xi2=x′2, H̃i3=h3, M̄i=1].

ii) For each history h3 and any x2, x′2 6=x2 and s2, there exists s1 such that

Pr[Xi2=x2|Si2=s2, Si1=s1, H̃i3=h3, M̄i=1]

6= Pr[Xi2=x′2|Si2=s2, Si1=s1, H̃i3=h3, M̄i=1].

Proof. We start matching the labeling of Xi2 within values of (s3, h3) by us-

ing the identified Pr[Si4=s4|Si3=s3, X̃i2=x2, H̃i3=h3, M̄i=1] from Lemma W16.

Taking two values s2 6=s′2 for a given s3 and h3, we can now pair vectors us-

ing condition i), which guarantees that only the same x2 will be equal in

Pr[Si4=s4|Si3=s3, Xi2=x2, Hi3=h3, M̄i=1] at all s4. This resolves the labeling

of Xi2 across s2 within values s3.

Next, we turn to Xi2 permutations across s3 values. For this,

we use Pr[X̃i2|Si2, Si1, H̃i3, M̄i=1] from Lemma W16 and fix a common

(s2, h3). For two different s3 6=s′3, condition ii) allows us to match the

permutation over x2 values because it ensures that for any two values

x2 6=x′2, the corresponding vectors Pr[X̃i2=x2|Si2=s2, Si1=s1, H̃i3=h3, M̄i=1]

and Pr[X̃i2=x′2|Si2=s2, Si1=s1, H̃i3=h3, M̄i=1] differ in at least one s1 value.

This means that all permutations of Xi2 across different s3 are labeled.
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Lemma W18 (Labeling x across h). We can align the σs3s2h3(·) permutations

of Xi2 across h3 if:

i) For any (z1, z2) and (z′1, z′2) 6=(z1, z2), there exists (s3, s2, s1) such that

Pr[Si3=s3|Si2=s2, Si1=s1, Zi1=z1, Zi2=z2, M̄i=1]

6= Pr[Si3=s3|Si2=s2, Si1=s1, Zi1=z′1, Zi2=z′2, M̄i=1].

ii) For any x2, x′2 6=x2 and (z1, z2), there exists (s1, s2) such that

Pr[X̃i2=x2|Si2=s2, Si1=s1, Zi1=z1, Zi2=z2, M̄i=1]

6= Pr[X̃i2=x′2|Si2=s2, Si1=s1, Zi1=z1, Zi2=z2, M̄i=1].

iii) For any z3 and z′3 6=z3, there exists (s3, s4) such that

∑
x2

Pr[Si4=s4|Si3=s3, X̃i2=x2, Zi3=z3, M̄i=1]

6=
∑
x2

Pr[Si4=s4|Si3=s3, X̃i2=x2, Zi3=z′3, M̄i=1].

iv) For any x2, x2 6= x′2 and z3, there exists (s3, s4) such that

Pr[Si4=s4|Si3=s3, X̃i2=x2, Zi3=z3, M̄i=1]

6= Pr[Si4=s4|Si3=s3, X̃i2=x′2, Zi3=z3, M̄i=1].

Proof. First, we want to align the labeling of Xi2 across z3 for fixed values
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(z1, z2). To tell which h3 histories share the same (z1, z2), we construct:
∑
x2

Pr[Si3|Si2, X̃i2=x2, H̃i3, M̄i=1] · Pr[X̃i2=x2|Si2, Si1, H̃i3, M̄i=1]

=
∑
x2

Pr[Si3|Si2, X̃i2=x2, Zi1, Zi2, M̄i=1] · Pr[Zi3|Si2, Si1, X̃i2 = x2, Zi1, Zi2, M̄i=1]
Pr[Zi3|Si2, Si1, Zi1, Zi2, M̄i=1]

× Pr[X̃i2 = x2|Si2, Si1, Zi1, Zi2, M̄i=1]

=
∑
x2

Pr[Si3|Si2, X̃i2=x2, Zi1, Zi2, M̄i=1] · Pr[Zi3|Zi2, M̄i=1]
Pr[Zi3|Zi2, M̄i=1]

× Pr[X̃i2 = x2|Si2, Si1, Zi1, Zi2, M̄i=1]

=
∑
x2

Pr[Si3|Si2, X̃i2=x2, Zi1, Zi2, M̄i=1] · Pr[X̃i2=x2|Si2, Si1, Zi1, Zi2, M̄i=1]

= Pr[Si3|Si2, Si1, Zi1, Zi2, M̄i=1],

where all probabilities in the first line have already been identified. Condition

i) states that Pr[Si3|Si2, Si1, Zi1, Zi2, M̄i=1] is separable, hence we can partition

the h3 histories into subgroups with identical (z1, z2) without knowing the actual

values of the pair (z1, z2).

We label the values x2 across z3 following the same procedure used across s3

values in Lemma W17. For two different histories h3 and h′3 with the same

(z1, z2), we compute Pr[X̃i2|Si2, Si1, Zi1=z1, Zi2=z2, M̄i=1]. Taking a given

value x2 in h3, condition ii) ensures that there is only one value for X̃i2 in h′3

with identical Pr[X̃i2=x2|Si2=s2, Si1=s1, Zi1=z1, Zi2=z2, M̄i=1] for all (s1, s2),

and this value is the same x2. Hence we have now aligned the values x2 across

different z3 for each value pair (z1, z2).
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Next, we observe:

Pr[Si4|Si3, X̃i2, H̃i3, M̄i=1]

=
∑
x3

Pr[Si4, X̃i3=x3|Si3, X̃i2, H̃i3, M̄i=1]

=
∑
x3

Pr[Si4|Si3, X̃i3=x3, X̃i2, H̃i3, M̄i=1] · Pr[X̃i3=x3|Si3, X̃i2, H̃i3, M̄i=1]

=
∑
x3

Pr[Si4|Si3, X̃i3=x3, X̃i2, Zi3, M̄i=1] · Pr[X̃i3=x3|Si3, X̃i2, Zi3, M̄i=1]

= Pr[Si4|Si3, X̃i2, Zi3, M̄i=1].

For each h3 we can construct ∑
x2 Pr[Si4=s4|Si3=s3, X̃i2=x2, Zi3=z3, M̄i=1].

This quantity has two important properties. On the one hand, it does not

depend on the ordering of x2 values, and on the other hand, it does not depend

on (z1, z2). Then condition iii) allows us to partition the h3 histories into groups

with common z3 values by looking across values of (Si4, Si3).

With this in hand, we take two histories h3 and h′3 with

identical z3, and compute for a given x2 in h3 the associated

Pr[Si4=s4|Si3=s3, Xi2=x2, Zi3=z3, M̄i=1]. Condition iv) guarantees that

only one value of X̃i2 in h′3, i.e. the same x2, will have the exact same

Pr[Si4=s4|Si3=s3, X̃i2=x2, Zi3=z3, M̄i=1] for all (s4, s3). This allows us to

align the values x2 across h3 within the same z3.

Finally, we conclude that aligning all h3 with common (z1, z2) as well as all

h3 with common z3 in fact aligns the σs3s2h3(·) permutations across all h3.

Lemma W19 (Labeling z). We can identify the values z2 for each history h3 if

there exists x2 such that for all (z2, z
′
2) the target wages w∗(x2, z2) and w∗(x2, z

′
2)

lie at different y2 values. In addition, we can identify the values of z3, and hence

Pr[Zi3|Zi2] under the assumption of diagonal dominance.

Proof. We rely on the monotonicity property of w∗(x, z) in z within a given value

x. If the current wage y2 is below w∗(x2, z2), the wage will increase between
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periods 2 and 3, and if it is above w∗(x2, z2), the wage will decrease. Hence for

a fixed value x2 and for each h3, we can get the bin of y2 that includes w∗(x2, z2)

by computing

y∗2(h3, x2) = max y2

s.t. Pr[Yi3 < Yi2|X̃i2=x2, Yi2=y2, H̃i3=h3,Mi3=0, M̄i=1]=0.

For any history h3 we have thus recovered the associated value of the target

wage. As long as there is a value x2 for which w∗(x2, z2) and w∗(x2, z
′
2) are in

different y2 cells, we can order the y∗2(h3, x2) values across values of h3, and given

the monotonicity of the target wage in match quality, this gives us the values of

z2 for each history h3. Simply put, calling z2(h3) the value of z2 in h3 and for the

particular x2 from the assumption, we get that z2(h3) = nz

nh

∑
h′3

1[y∗2(h′3, x2) <

y∗2(h3, x2)]. Here, it is key to be able to correctly label the values x2 across

histories h3.

From Lemma W18 we already know which histories h3 have a common z3.

Take such a set of histories that share a given z3. Find the h3 in that set

such that Pr[H̃i3=h3|Zi2=z2(h3)] > Pr[H̃i3=h′3|Zi2=z2(h3)] for all possible h′3
unconditionally of all other variables. For this particular h3 we know from

diagonal dominance that z3(h3)=z2(h3). This pins down the z3 value for the

whole set. Given that we now know z2 and z3 for all h3, we can construct the

transition matrix Pr[Zi3|Zi2].

Lemma W20 (Law of motion of x). Using the identified

Pr[Si4|Si3, X̃i2, H̃i3, M̄i=1] and Pr[Si3|Si2, X̃i2, H̃i3, M̄i=1], we recover

Pr[Xi3|Xi2] up to a common labeling if the matrix of Pr[Si3|Si2, X̃i2, H̃i3, M̄i=1]

with (Si3, Si2, H̃i3) in rows and X̃i2 in columns has full column rank.

Proof. Using the identified Pr[Si4|Si3, X̃i2, H̃i3, M̄i=1] we write for all (s4, h3, x2)
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and all s3 = (y3,m3) with m3=0:

Pr[Si4=s4|Si3=s3, X̃i2=x2, H̃i3=h3, M̄i=1]

=
∑
x3

Pr[Si4=s4|Si3=s3, X̃i3=x3, X̃i2=x2, H̃i3=h3, M̄i=1]

× Pr[X̃i3=x3|Si3=s3, X̃i2=x2, H̃i3=h3, M̄i=1]

=
∑
x3

Pr[Si3=s4|Si2=s3, X̃i2=x3, H̃i3=h3, M̄i=1] · Pr[X̃i3=x3|X̃i2=x2],

where the last line is derived from the following two considerations. First, we

can manipulate Pr[Si4=s4|Si3=s3, X̃i3=x3, X̃i2=x2, H̃i3=h3, M̄i=1]:

Pr[Si4=s4|Si3=s3, X̃i3=x3, X̃i2=x2, H̃i3=h3, M̄i=1]

= Pr[Si4=s4|Yi3=y3,Mi3=0, X̃i3=x3, X̃i2=x2, H̃i3=h3,Mi2=0,Mi1∈{0, 3}]

= Pr[Si4=s4|Yi3=y3,Mi3=0, X̃i3=x3, Zi3=z3(h3)]

= Pr[Si3=s4|Yi2=y3,Mi2=0, X̃i2=x3, Zi2=z3(h3)]

= Pr[Si3=s4|Si2=s3, X̃i2=x3, Zi2=z3(h3), M̄i=1]

= Pr[Si3=s4|Si2=s3, X̃i2=x3, H̃i3=h3, M̄i=1],

where the Markovian property of the contract gives us that

Pr[Si4|Si3, Xi3, Hi3, M̄i=1] = Pr[Si4|Si3, Xi3, Zi3] and stationarity of the

environment insures that Pr[Si4|Si3, Xi3, Zi3] and Pr[Si3|Si2, Xi2, Zi2] are the
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same. Second, Pr[X̃i3=x3|Si3=s3, X̃i2=x2, H̃i3=h3, M̄i=1] simplifies to:

Pr[X̃i3=x3|Si3=s3, X̃i2=x2, H̃i3=h3, M̄i=1]

= Pr[X̃i3=x3, Si3=s3|X̃i2=x2, H̃i3=h3, M̄i=1]
Pr[Si3=s3|X̃i2=x2, H̃i3=h3, M̄i=1]

=
∑
s2

Pr[X̃i3=x3, Si3=s3, Si2=s2|X̃i2=x2, H̃i3=h3, M̄i=1]
Pr[Si3=s3|X̃i2=x2, H̃i3=h3, M̄i=1]

=
∑
s2

Pr[X̃i3=x3, Si3=s3|Si2=s2, X̃i2=x2, H̃i3=h3, M̄i=1] · Pr[Si2=s2|X̃i2=x2, H̃i3=h3, M̄i=1]
Pr[Si3=s3|X̃i2=x2, H̃i3=h3, M̄i=1]

=
∑
s2

Pr[X̃i3=x3|Si2=s2, X̃i2=x2, H̃i3=h3, M̄i=1] · Pr[Si3=s3|Si2=s2, X̃i2=x2, H̃i3=h3, M̄i=1]

× Pr[Si2=s2|X̃i2=x2, H̃i3=h3, M̄i=1]
Pr[Si3=s3|X̃i2=x2, H̃i3=h3, M̄i=1]

=
∑
s2

Pr[X̃i3=x3|Si2=s2, X̃i2=x2, Zi2=z2(h3)] · Pr[Si3=s3, Si2=s2|X̃i2=x2, H̃i3=h3, M̄i=1]
Pr[Si3=s3|X̃i2=x2, H̃i3=h3, M̄i=1]

=
∑
s2

Pr[X̃i3=x3|X̃i2=x2] · Pr[Si3=s3, Si2=s2|X̃i2=x2, H̃i3=h3, M̄i=1]
Pr[Si3=s3|X̃i2=x2, H̃i3=h3, M̄i=1]

= Pr[X̃i3=x3|X̃i2=x2],

where Xi3 is independent of M̄i due to its Markovianity. Furthermore, X̃i3 and

Si3 are independent of each other given (Si2, Xi2, Zi2) in the optimal contract.

Hence, we get a linear system in Pr[X̃i3|X̃i2] and the linear independence of

Pr[Si3|Si2, X̃i2, H̃i3, M̄i=1] across values of X̃i2 is sufficient to guarantee recov-

ering Pr[Xi3|Xi2] up to a common permutation.

Lemma W21 (Stationary laws of motion). From Lemmas W16, W19 and

W20 we identify Pr[Yi,t+1,Mi,t+1|Yit, X̃it, Zit] for Yit 6=0, Pr[Zi,t+1|Zit] and

Pr[X̃i,t+1|X̃it].

Proof. The identified Pr[Si3|Si2, X̃i2, H̃i3, M̄i=1] is equal to Pr[Si3|Si2, X̃i2, Zi2]

with Mi2=0 due to the Markovian structure of the model, see Lemma W20.

For any Yi2>0, the contract is also independent of Mi2 given (Si2, Xi2, Zi1).

Since this delivers Pr[Si3|Yi2, X̃i2, Zi2] with Yi2>0, stationarity of the model
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allows us to generalize and hence we identify Pr[Yi,t+1,Mi,t+1|Yit, X̃it, Zit] for

Yit>0 . Similarly, stationarity of the structural model also allows us to conclude

that Pr[Zi3|Zi2] = Pr[Zi,t+1|Zit] and Pr[X̃i3|X̃i2] = Pr[X̃i,t+1|X̃it], recovered in

Lemmas W19 and W20.

Lemma W22 (Worker expected present value). With known utility function

u(·), cost function c(·) and discount factor β, and in the absence of flat regions

in the Pareto frontier, we show that the present value of the worker, V (x, z, w),

is uniquely defined from the transition probabilities of Lemma W21.

Proof. In the absence of flat regions in the Pareto frontier, we can use the wage,

w, as a state instead of the promised value, V , and thus express the expected

worker value as V (x, z, w), which we aim to identify at any given state (x, z, w).

With w′(x, z, w) denoting the wage function, recall from the model section:

V (x, z, w) = sup
v1,e

u(w)− c(e) + βδ(e)Ex′ [U(x′)|x] + β(1− δ(e))κp(θ(x, v1))v1

+ β(1− δ(e))(1− κp(θ(x, v1)))Ex′z′ [V (x′, z′, w′(x, z, w))|x, z]

= u(w)− c(e∗) + βδ∗Ex′ [U(x′)|x] + (1− δ∗)βκp∗1 · v1(x, z, w)

+ β(1− δ∗)(1− κp∗1)Ex′z′ [V (x′, z′, w′(x, z, w))|x, z],

where we abstract from the lottery and substitute in the optimal policy

(δ∗, e∗, p∗1).

We now replace expectations and present values with empirical counterparts

and construct a recursive expression for V (x, z, w). Note that we can write

v1(x, z, w) and v0(x) as functions of the empirical transitions from Lemma W21:

v1(x, z, w) = Ex′w′ [V (x′, z0, w
′)|X=x, Z=z, Y=w,M ′=1]

v0(x) = Ex′w′ [V (x′, z0, w
′)|X=x,M ′=3],

where the expectations are taken with respect to Pr[Xi,t+1|Xit] and
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Pr[Sit|Si,t−1, Xt−1, Zt−1]. Replacing them in V (x, z, w) gives:

V (x, z, w) = u(w)− c(e∗) + βδ∗Ex′ [U(x′)|x]

+ β(1− δ∗)κp∗1Ex′w′ [V (x′, z0, w
′)|x, z, w,M ′=1]

+ β(1− δ∗)(1− κp∗1)Ex′z′w′ [V (x′, z′, w′)|x, z, w,M ′=0],

where the unknowns are the functions U and V . To get U(x) note that in the

model, as effort approaches zero, the worker is indifferent between working and

not working. With the previously imposed normalization δ(e) = 1 − e, this

point of indifference is where the job destruction probability δ approaches one.

Let’s then define:

Ṽ (x, z, w) ≡ κp∗1Ex′w′ [V (x′, z0, w
′)|x, z, w,M ′=1]

+ (1− κp∗1)Ex′z′w′ [V (x′, z′, w′)|x, z, w,M ′=0],

and call w(x, z) the wage such that:

w(x, z) ≡ arg min
w
δ∗(x, z, w) s.t. δ∗(x, z, w) < 1.

The first order condition c′(e∗) = βṼ (x, z, w) − βEx′ [U(x′)|x] together with

c′(0) = 0 then implies Ex′ [U(x′)|x] = Ṽ (x, z, w(x, z)), which we plug in:

V (x, z, w) =u(w)− c(1− δ∗)

+ βδ∗κp∗1Ex′w′ [V (x′, z0, w
′|x, z, w(x, z),M ′=1]

+ βδ∗(1− κp∗1)Ex′z′w′ [V (x′, z′, w′)|x, z, w(x, z),M ′=0]

+ β(1− δ∗)κp∗1Ex′w′ [V (x′, z0, w
′)|x, z, w,M ′=1]

+ β(1− δ∗)(1− κp∗1)Ex′z′w′ [V (x′, z′, w′)|x, z, w,M ′=0].

This mapping expresses V (x, z, w) as an integral equation and satisfies the

Blackwell-Boyd conditions of discounting and monotonicity. We thus establish

uniqueness of the identified value function of the worker.
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Remark W1 (Identifying c(·)). We can go one step further and find the func-

tion c(·) itself. Starting again from the effort decision,

c′(1− δ∗(x, z, w)) = βṼ (x, z, w)− βEx′ [U(x′)|x],

we multiply both sides by δ∗w(x, z, w), the derivative of δ∗(x, z, w) with respect to

w, and integrate from w(x, z) to w. This gives:

−c(1− δ∗(x, z, w)) = β

ˆ w

w(x,z)
δ∗w(x, z, u)

(
Ṽ (x, z, u)− Ex′ [U(x′)|x]

)
du

= β

ˆ w

w(x,z)
δ∗w(x, z, u)

(
Ṽ (x, z, u)− Ṽ (x, z, w(x, z))

)
du,

which can be substituted back into the main equation to get:

V (x, z, w) = u(w) + β

ˆ w

w(x,z)
δ∗w(x, z, u)

(
Ṽ (x, z, u)− Ṽ (x, z, w(x, z))

)
du

+ βδ∗Ṽ (x, z, w(x, z))

+ β(1− δ∗)Ṽ (x, z, w),

where δ∗w(x, z, u) < 0. This appears to have the form of a Volterra equation of

the second kind. Existence and uniqueness is then guaranteed under very mild

conditions, see Evans (1911) and Abdou, Soliman, and Abdel-Aty (2020), and

V (x, z, w) is uniquely identified.

Lemma W23. f(x, z) is identified from V (x, z, w) and the properties of the

model if the transition rules of Xit and Zit are invertible.

Proof. We use V (x, z, w) from Lemma W22 and the property that J ′(x, z, V ) =

− 1
u′(w) , which is integrated to identify J(x, z, V ) up to a (x, z)-specific constant

a(x, z). Denoting as w(x, z, V ) the inverse function of V (x, z, w), we have:

J(x, z, V ) = a(x, z)−
ˆ V

V (x,z,w∗(x,z))

1
u′(w(x, z, ω)) dω.

At the target wage w∗(x, z) wages stay constant, w′(x, z, w∗(x, z))=w∗(x, z), and

expected firm profits are zero, Ex′z′ [J(x′, z′, V (x′, z′, w∗(x, z))|x, z]=0, so we get
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the following linear system for the intercepts a(x, z):

0 =
∑
x

∑
z

Ex′z′ [J(x′, z′, V (x′, z′, w∗(x, z))|x, z]

=
∑
x

∑
z

Ex′z′ [a(x′, z′)|x, z],

where invertibility of the transition rules guarantees that all a(x, z) are uniquely

defined. This identifies the J(x, z, V ) function.

The final step is to use the Bellman equation of the firm’s contracting prob-

lem to recover the production function:

f(x, z) = J(x, z, V (x, z, w∗(x, z)) + w∗(x, z).

W3 Data web appendix

W3.1 Institutional background

In this section we discuss the institutions associated with wage setting in Sweden

during the years in the data. An important aspect of the Swedish labor market is

the presence of Industrial Agreement (IA). In the 1990’s many such agreements

were put in place, specifying wage floors that were negotiated at the industry or

firm level. A National Mediation Office was also established with the power to

appoint mediators. Fredriksson and Topel (2010) presents a detailed picture of

the different systems using sources from the Swedish Mediation Office Annual

Report (2002). To get an overview, we briefly describe the different models of

agreements with their share in the private sector:

1. Local bargain without restrictions (7%): wage increases are set fully locally

between the employer and the employee.

2. Local bargain with a fallback (8%): wage increases are set locally, but if the

parties cannot agree a central agreement specifies a general wage increase.
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3. Local bargain with a fallback plus a guaranteed wage increase (16%): same

as before, but with an additional minimum wage increase guaranteed by

the central agreement.

4. Local wage frame without a guaranteed wage increase (12%): the local

parties receive a total wage increase, but they can decide locally how this

total increase is distributed across employees.

5. Local wage frame with guarantee or a fallback regulating the guarantee

(28%): same as before, but with in addition either a guaranteed wage

increase or at least a fallback in case an agreement cannot be reached.

6. General pay increase plus local wage frame (18%): a specified pay increase

plus a total increase that can be split among employees in a way which is

decided locally (as in model 4).

7. General pay increase (11%): a pay increase specified by the central agree-

ment.

From these numbers, we note that at the two extremes, 11% of private sector

workers are subject to a general pay increase and 7% bargain over their wages

without any restrictions. The remaining 82% of agreements involve some level of

local negotiation and hence the wage variation should reflect firm performance

(please refer to Table 3.3 in Fredriksson and Topel (2010) for more details).

While all these institutions are in place, how flexible the realized wages are

and how they relate to productivity remains an empirical question. Indeed

Fredriksson and Topel (2010) says: “While the IA model may have delivered

incentives for wage restraint at the aggregate level, it is reasonable to think that

it has had a minor influence on the wage structure.” Carlsson, Häkkinen Skans,

and Nordstrom Skans (2019) find evidence of flexibility in response to local

shocks, pointing to an ability of wages to adapt to local productivity. Taking

stock, we believe the richness of the data in the Swedish economy, together with
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a significant level of wage adjustment at the employer level, provides a natural

environment to study the contracting between employer and employee.

W3.2 Moments description

Based on the quarterly sample we compute the following transition rates:

PrU2E =

∑
i

∑
q>1

1
{
jiq > 0 and jiq−1 = 0

}
∑
i

∑
q>1

1
{
jiq−1 = 0

}

PrJ2J =

∑
i

∑
q>1

1
{
jiq 6= jiq−1 and jiq > 0 and jiq−1 > 0

}
∑
i

∑
q>1

1
{
jiq > 0 and jiq−1 > 0

}

PrE2U =

∑
i

∑
q>1

1
{
jiq = 0 and jiq−1 > 0

}
∑
i

∑
q>1

1
{
jiq−1 > 0

}
.

Next, for convenience, we define the empirical mean, variance and covariances

over a set S of observations, which are effectively conditional empirical expec-

tations, for any random variables Xit and Yit:

ES [Xit] =

∑
(i,t)∈S

Xit∑
(i,t)∈S

1

VarS [Xit] = ES
[
(Xit − ES [Xit])2

]
CovS[Xit, Yit] = ES

[
(Xit − ESXit)(Yit − ESYit)

]
.

Let τU2E
i (1) and τU2E

i (2) be the first and last transition from unemployment to

employment within the sample for worker i. Since we use earnings, we use the

yearly data. This gives:

τi(1) = min
{
t > 0 s.t. jit > 0 and jit−1 = 0

}
τi(2) = max

{
t > 0 s.t. jit > 0 and jit−1 = 0

}
.
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We then define the following sets S:

SE =
{

(i, t) s.t. jit>0
}

SEE =
{

(i, t) s.t. jit>0 and jit−1>0
}

SEEE =
{

(i, t) s.t. jit>0, jit−1>0 and jit−2>0
}

SEAE =
{

(i, t) s.t. jit>0 and jit−2>0
}

SU2E =
{

(i, t) s.t. jit>0 and jit−1=0
}

SJ2J =
{

(i, t) s.t. jit>0, jit−2>0 and jit 6=jit−2
}

SS =
{

(i, t) s.t. jit>0 and jit=jit−1
}

SSS =
{

(i, t) s.t. jit>0 and jit=jit−1=jit−2
}

SUEUE =
{

(i) s.t. τi(1) > 0 and τi(2) > 0
}
.

This directly defines all moments in Table 1, except for the last, for which we

construct the retention probability

p̃jt =

∑
i

∑
t

1{jit = j and jit−1 = j}∑
i

∑
t

1{jit−1 = j}

and compute CovSEE

[
∆ log(1− p̃jit,t),∆ logwit

]
.

Finally, to get standard errors of the moments we employ a bootstrap strat-

egy with 100 replications. For all individual-specific moments, we bootstrap at

the individual level, while for moments involving firm quantities such as yjt and

p̃jt, we bootstrap at the firm level.

W4 Estimation web appendix
In this appendix we detail the estimation procedure. In order to obtain the

parameters via indirect inference, we solve the model at each parameter value,

simulate data and finally compute the moments.
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W4.1 Numerical solution to the model

We choose nz = 7, nx0 = 3 and nx1 = 5 points of support for the productivity

types, which results in a total of 105 different productivity levels. The promised

utility has 200 points of support and is linearly interpolated. For a good starting

value in the iterative procedure, we initially solve a simpler model without on-

the-job search and the agency problem by iterating over the firm’s value, solving

the tightness function and updating the worker’s problem.

Solving for the optimal contract is a computationally difficult problem, hence

we try to keep it tractable. Given that the solution to the search problem is

needed many times, we parameterize the p̂(x,W ) curve for each x as follows:

p̂(x,W ) = a(x) + b(x)(W −W (x))c(x).

The fit of this function provides an R-square larger than 0.99. The benefit

of this parameterization is that the optimal search decision, the probability to

receive an offer and the return to search can all be computed in closed form.

Similarly, we introduce a second functional approximation for the value to the

firm and approximate it using a power decomposition:

J(x, z, V ) = a(x, z) +
K∑
k=1

(V − v̄k(x, z))ck(x,z).

Setting K=1 provides an R-square above 0.99.

Based on these two functional approximations, we look for a fixed point. To

do this, we solve the firm problem in its recursive Lagrangian representation:

P(x, z, ρ) = inf
ωi

sup
πi,wi,Wi≥W (x)

∑
i=1,2

πi

(
f(x, z)− wi + ρ

(
u(wi) + r̃(x,Wi)

)
− βωip̃(x,Wi)Wi + βp̃(x,Wi)Ex′z′ [P(x′, z′, ωi)|x, z]

)
.

This requires finding the optimal ωi at each state, which we obtain from the zeros

in the first order condition. We then iterate over updating the firm problem, the
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tightness function and the worker’s unemployment value. During our iterations

towards the fixed point, we update the equilibrium condition at a decreasing

rate to avoid oscillation around the solution. We stop this procedure when the

mean square error (scaled by the total L2 norm) is below 10−8 between two

consecutive iterations for all value functions.

W4.2 Simulating moments

The challenge when computing moments is to simulate firms as bundles of work-

ers, each sharing a history of shocks. We draw a sequence of νt shocks and

construct the corresponding paths of match quality zt. The νt sequence can be

thought of as a circle on which workers evolve as part of a firm, and so repre-

sents an infinite sequence of shocks. Workers who move to a new job start at a

randomly chosen new point on the circle and are assigned a zt = z0. They then

follow the predetermined sequence of z from that point forward. All workers at

a given point on the circle are coworkers.

In practice we use a circle of length 200 and simulate 20, 000 workers with

random starting points. Discarding a burn-in period, we finally focus on the

last 30 periods of data. When computing the simulated moments, we repeat

the simulation 20 times. For each simulation we redraw everything, including

the νt and zt sequences, and take averages over the replications.

W4.3 Optimization

Our objective function is given by

O(θ) = (M̂ −M(θ))′W(M̂ −M(θ)),

where M̂ is the vector of moments from the data, W is a diagonal matrix of

weights and M(θ) is the vector of moments simulated from the model. We

weight all moments in the model by the inverse of their value in the data, with

the exception that we scale the auto-covariances by their variances because the
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Figure W1: Surrogate line search

Notes: This plots an example of our surrogate line search in the direction of the
parameter γ1 associated with effort cost. The blue dots are individual evalua-
tions, the orange solid line is the fitted spline, the dashed line shows the previous
value and the red vertical line is the updated number. Close to the end of the
optimization the update is very small and minimizes the objective.

auto-covariances are often close to zero.

Our optimization procedure is a custom surrogate line search, i.e. we choose

a direction in the parameter space and evaluate 100 points in that direction. We

then fit a smoothing spline, picking the smoothing parameter to minimize the

leave-one-out mean square prediction error. We finally pick our new parameter

as the minimum of that smoothing spline. See Figure W1 for an example of

such an approach.

W4.4 Computing standard errors

To derive the standard errors we ignore simulation noise and employ the con-

ventional sandwich formula using the diagonal variance covariance matrix for

the moments Σ̂:

1
nf

(
∂M(θ)
∂θ

′

W ∂M(θ)
∂θ

)−1
∂M(θ)
∂θ

′

WΣ̂W ∂M(θ)
∂θ

(
∂M(θ)
∂θ

′

W ∂M(θ)
∂θ

)−1

,
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where Σ̂ is estimated by bootstrap and where we set all off-diagonal terms to

zero. We scale by the number of firms nf because some moments are computed

at the firm level and we consider an asymptotic with many firms.
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Figure W2: Slices of the objective function

Notes: This plots the objective function against each parameter, away from the
optimal parameter value. The y-axis is log-scaled.
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Figure W4: Sensitivity measure

x z x0 mw my x1 z 1 b 0

PrU2E

PrJ2J

PrE2U

VarSE[logwit]

CovSUEUE[logwi, i(1), logwi, i(2)]

ESE[logwit] ESU2E[logwit]

ESEE[ logwit]

ES J2J[logwit logwit 2]

VarSEE[ logwit]

CovSEEE[ logwit, logwit 1]

VarSEE[ logyit]

CovSEEE[ logyit, logyit 1]

CovSEE[ logwit, logyit]

CovSEE[ log(1 pit), logyit]

0.32 0.33 -2.68 -0.05 -0.31 6.17 2.63 1.14 -2.13 0.97 -5.63 0.03

1.31 4.04 -30.32 -0.63 1.11 77.97 13.42 7.39 35.94 2.47 18.19 0.01

-2.85 -11.41 15.09 0.49 3.40 -56.16 -61.82 -19.32 18.93 3.06 38.46 -0.34

-0.51 0.21 4.23 -0.01 -0.08 0.58 1.54 0.22 -0.03 -0.01 -0.39 0.00

0.48 -0.17 -0.62 0.00 0.06 -0.26 -1.17 -0.21 0.28 0.04 0.32 -0.00

-0.16 -0.48 0.57 0.01 0.24 -3.87 -3.08 -1.02 0.37 0.13 2.43 -0.02

2.12 5.82 11.26 -0.39 -4.74 -11.28 42.68 10.96 -43.85 -4.78 -38.18 0.36

0.56 0.47 -3.94 -0.08 -0.57 9.30 4.27 1.79 -3.44 -0.49 -4.42 0.04

0.46 -0.43 -16.71 3.70 1.28 18.04 -2.59 -3.00 15.61 1.54 8.92 -0.11

0.24 -0.64 -30.89 -2.50 2.71 37.80 -4.58 -6.54 32.77 3.26 18.28 -0.23

-0.05 -1.25 -16.57 -0.22 2.94 13.88 -7.73 -5.80 18.40 1.98 11.66 -0.17

-0.12 -2.57 -32.81 -0.44 3.23 26.90 -15.56 -11.70 36.61 3.95 23.36 -0.33

17.82 50.18 -122.44 -4.61 -16.42 216.63 309.29 59.83 -115.49 -15.03 -202.88 1.36

0.72 3.24 -34.55 -0.43 4.33 31.11 -7.31 -7.81 22.97 2.47 8.14 -0.22

Notes: Measure of sensitivity from Andrews, Gentzkow, and Shapiro (2017).
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Figure W5: Sensitivity measure for level variance decompositions

f : x0 f : x1 f : z w : x0 w : x1 w : z w : other

PrU2E

PrJ2J

PrE2U

V arSE [logwit]

CovSUEUE [logwi,τi(1), logwi,τi(2)]

ESE [logwit]− ESU2E [logwit]

ESEE [∆ logwit]

ESJ2J [logwit − logwit−2]

V arSEE [∆ logwit]

CovSEEE [∆ logwit,∆ logwit−1]

V arSEE [∆ log yit]

CovSEEE [∆ log yit,∆ log yit−1]

CovSEE [∆ logwit,∆ log yit]

CovSEE [∆ log(1− p̃it),∆ log yit]

-0.54 3.53 0.54 -1.08 0.16 0.12 0.86

-6.26 41.93 2.16 -10.61 2.10 0.27 6.56

3.04 -32.11 -12.78 8.76 -0.81 -2.12 -9.38

0.86 0.19 0.37 1.17 -0.14 0.05 0.10

-0.13 -0.01 -0.26 -0.13 0.16 -0.03 0.05

0.11 -2.20 -0.62 0.46 -0.07 -0.10 -0.48

2.40 -4.17 8.26 -0.36 -0.38 2.01 3.79

-0.79 5.35 0.87 -1.64 0.26 0.19 1.41

-3.44 9.48 -0.01 -3.81 0.81 -0.27 1.14

-6.37 19.67 0.15 -6.72 1.49 -0.55 2.42

-3.42 6.96 -0.91 -2.97 0.71 -0.50 0.44

-6.77 13.45 -1.80 -5.82 1.40 -1.01 0.78

-24.67 126.91 66.29 -50.25 6.09 11.24 47.70

-7.10 16.30 -2.60 -7.66 1.31 -0.45 3.35

Notes: Measure of sensitivity from Andrews, Gentzkow, and Shapiro (2017)
for the counterfactual decomposition from Table 1. This reflects how changing
one of the data moments by one unit would affect the counterfactual variance
attributed to each of x0, x1, z in match output and in wages.
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