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Abstract

Variational inference is a popular machine learning method in a variety of fields, in-
cluding natural language processing and computer vision. In this paper we evaluate its
performance to estimate models of earnings dynamics. We focus on models with a Marko-
vian, conditionally Gaussian persistent component and an additive transitory component.
We parameterize the data-generating processes to match estimates from the earnings lit-
erature while allowing for nonlinearities, non-Gaussianity, serial correlation in transitory
shocks, and time-invariant latent heterogeneity. We implement a range of variational
posterior families leading to differentiable objective functions. The results highlight that
variational posterior choice is crucial: independent (also known as “mean-field”) approxi-
mations systematically underperform, while richer families provide more reliable inference.
We find that the persistent component process is generally well recovered, but that the
kurtosis of transitory shocks tends to be understated. Finally, applying the estimator to
the Panel Study of Income Dynamics (PSID) from 1980 to 1990, we find the presence of

nonlinearities in the conditional volatility and persistence of earnings.
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1 Introduction

Understanding the nature of individual earnings dynamics is central to answering a wide range
of economic questions, from the design of social insurance systems to the evaluation of con-
sumption and saving behavior. While much empirical work has relied on linear specifications of
earnings processes, growing evidence (e.g., Guvenen et al., 2021, Arellano et al., 2017) suggests
that nonlinearities — such as asymmetric shocks and nonlinear persistence — play a crucial role
in shaping economic outcomes; see the survey by Arellano (2014). What is the shape of these
nonlinearities? How much risk do individuals face at different points of the income distribu-
tion? How much of this risk is transitory, how much is persistent, and how much is reflected
into consumption decisions?

Answering these questions requires empirical frameworks that go beyond linear autoregres-
sions, motivating dynamic, nonlinear state-space models with latent variables — such as the
model proposed by Arellano et al. (2017) — to flexibly capture the joint dynamics of earnings
through the dynamics of their persistent and transitory components. However, despite their
appeal, such nonlinear latent variable models are computationally demanding to estimate. The
core challenge comes from the difficulty to evaluate the likelihood function. In models with
transitory shocks, the likelihood function does not admit a closed-form expression and must
instead be approximated numerically. Available strategies in the literature, such as based on
extensions of the Expectation-Maximization (EM) algorithm, require sophisticated methods to
draw the latent components, which are delicate to tune and do not scale well to longer panels.

This paper analyses a scalable estimation approach for nonlinear latent variable models,
leveraging recent advances in machine learning. We employ a wvariational inference approach
(e.g., Jordan et al., 1999, Kingma and Welling, 2014), which maximizes the so-called Evidence
Lower Bound (ELBO) instead of the log-likelihood function; see Blei et al. (2017) for a com-
prehensive survey. Variational inference transforms the problem of repeated integration over
latent trajectories into an optimization problem, thereby avoiding the curse of dimensionality
that undermines exact likelihood-based methods. It is fully differentiable and naturally com-
patible with modern automatic differentiation and stochastic gradient algorithms, which makes
estimation fast and scalable to panels with long time series or large populations — even when
the latent process is nonlinear or non-Gaussian. These features make it feasible to bring flexible
state-space models to data that were previously beyond reach.

At the same time, the approach comes with important limitations. Because the ELBO is

only a lower bound on the log-likelihood function, maximizing the ELBO generally leads to



a biased and inconsistent estimator. The ELBO objective is constructed by approximating
the posterior distribution of the latent components (which is intractable in the setting we
study) by a family of variational posterior densities. The bias on parameter estimates tends
to increase with the gap between the true posterior and the variational family. Moreover,
while considering a flexible family reduces this gap, the optimization problem can be complex,
requiring careful parameterization of the posterior and attention to convergence issues. In
practice, the effectiveness of variational inference thus depends critically on the design of the
variational posterior family: too restrictive a form risks incorrect inference, while overly flexible
forms may be computationally burdensome or unstable.

Our starting point is a nonlinear latent variable model of earnings dynamics that nests as
a special case the “canonical” persistent-transitory model: a linear Gaussian autoregressive
process with an additive i.i.d. shock. The generalization we introduce accommodates nonlinear
persistence, state-dependent volatility, serially correlated or heavy-tailed transitory shocks, and
time-invariant latent heterogeneity. In the model, the persistent component evolves through
general conditional mean and volatility, while transitory shocks follow a flexible distribution
that may exhibit excess kurtosis, moving average dependence, or heterogeneous volatility across
individuals. This model captures many of the salient features emphasized in the empirical
literature, including state-dependent volatility, asymmetric shocks, and nonlinear persistence.

We use simulated data to evaluate how variational inference performs across a sequence of
models of increasing complexity: a linear Gaussian benchmark, a specification where mean and
variance are nonlinear functions of the persistent state, a model where transitory shocks follow
a first-order moving average process, and a model where the variances of transitory shocks differ
across individuals. In all cases, we rely on a Gaussian specification to approximate the posterior
distribution of the latent components. While the choice of the Gaussian is motivated by its
simplicity, we experiment with various restrictions on the covariance matrix, and in extensions
we also evaluate the performance of some specific transformations of the Gaussian.

We start by considering the canonical model based on a linear Gaussian process. We find
that the parameters of this benchmark model are well recovered. This is expected since in
this case the true posterior is Gaussian, and thus belongs to the variational family we rely on.
However, we find that correctly capturing the covariance structure of the earnings process is
crucial: when using a variational posterior with independent components over time (a popular
specification in machine learning called “mean-field” approximation) biases are substantial.

We then consider nonlinear extensions of this model. We find that variational inference

recovers the conditional mean and variance of the persistent component quite well. However,



it does not capture higher moments of the transitory component such as kurtosis. Similar
difficulties arise in versions of the model that include serially correlated transitory shocks or
time-invariant heterogeneity. Across specifications, we find that mean-field approximations
perform poorly, while unrestricted Gaussian variational posteriors and their structured coun-
terparts that exploit the dynamic structure of the model perform better.

We apply the method to annual data from the Panel Study of Income Dynamics (PSID) for
the years 1980-1990, estimating a flexible model that allows for an MA(1) transitory component
and nonlinearity in the process of the persistent component. We find that the conditional mean
of the persistent earnings component is approximately linear, with average persistence close to
unity, while the conditional variance is nonlinear, displaying a U-shape across the distribution.
We also uncover evidence of serial correlation in transitory shocks. As in Arellano et al. (2017),
we find that persistence is nonlinear, in the sense that it is lower when high-income households
experience negative shocks or low-income households experience positive shocks.

Overall, we see this paper as a primer on the use of variational inference for estimating
nonlinear models of earnings dynamics. We restrict ourselves to a Gaussian variational family,
or (in an extension) to a simple transformation of the Gaussian. Despite this parsimonious
choice, the evidence we obtain suggests that, while the method tends to understate the non-
Gaussian features of transitory shocks, in the settings we study the variational approximation
captures some of the key features of persistence, volatility, and risk that matter for economic
analysis. This encouraging evidence motivates importing and improving these methods for their

use in dynamic economic settings.

Literature. A rich empirical literature has studied the dynamics of individual earnings,
documenting important linear and nonlinear dynamic features. Key contributions include Lil-
lard and Willis (1978) and Abowd and Card (1989), among many others. Early work modeled
earnings as the sum of persistent and transitory components, typically assuming linear Gaus-
sian processes. However, subsequent empirical studies have shown that these assumptions are
too restrictive. Meghir and Pistaferri (2004) develop econometric methods to separate transi-
tory and permanent shocks to income using both earnings and consumption data, uncovering
heterogeneity in variances across individuals. The broader literature, as reviewed by Meghir
and Pistaferri (2011), emphasizes the importance of nonlinearities, including age-dependent
volatility, state-dependent persistence, and heteroskedasticity as a source of earnings risk.
Recent contributions use nonlinear state-space models to allow for richer dynamics. Arel-

lano et al. (2017) propose a quantile-based panel framework in which individual latent states



evolve nonlinearly. This setup reveals that persistence is nonlinear, showing that shocks have
different effects depending on past earnings. De Nardi et al. (2020) compare linear and non-
linear earnings processes in a structural life-cycle model and show that models with skewness,
kurtosis, and state-dependent variances produce markedly different predictions for consumption
inequality and self-insurance behavior than their linear Gaussian counterparts. Braxton et al.
(2024) develop a generalized Kalman filter and document how income risk varies along the skill
distribution.

While variational inference has been successfully applied to many fields, including text
analysis (Blei et al., 2003) and computer vision (Kingma and Welling, 2014), applications to
economics are still relatively limited. Chan and Yu (2022) develop variational methods for large
Bayesian VARs with stochastic volatility. Loaiza-Maya and Nibbering (2023) apply variational
inference to structural discrete choice models. Mele and Zhu (2023) and Bonhomme (2021) use
variational inference to estimate network formation and team production models, respectively.

In this paper, we focus on the empirical performance of variational inference on simulated
and real data. There is also a literature on theoretical properties. A key question is whether
parameters that maximize the evidence lower bound are asymptotically consistent for the true
parameters of the model. Bickel et al. (2013) provide results for stochastic blockmodels, West-
ling and McCormick (2019) study Gaussian mixture models, and Katsevich and Rigollet (2024)
study Gaussian variational inference when the true posterior is approximately Gaussian. In
recent work, Medina et al. (2022) study the use of a-posteriors and their variational approxi-
mations in the presence of model misspecification.

The remainder of the paper is organized as follows. In Section 2 we introduce a nonlinear
latent variable model of earnings dynamics, and in Section 3 we describe how variational in-
ference can serve as a practical alternative to direct likelihood methods in this context. We
then present simulation evidence based on a linear Gaussian data-generating process (DGP)
in Section 4, and based on a nonlinear DGP in Section 5. In Section 6 we show how to ex-
tend the approach to allow for serially correlated transitory shocks and time-invariant latent
heterogeneity. In Section 7 we present an empirical application using PSID data. Finally, in
Section 8 we describe two alternatives to Gaussian-based variational inference, and we conclude
in Section 9. Details about implementation are provided in Appendix B, and computer codes

will be available online.



2 A Nonlinear Model of Earnings Dynamics

In this section, we introduce a nonlinear latent variable model for individual earnings dynamics.
The model has a hidden Markov — i.e., permanent-transitory — structure. Let 1, denote log
earnings for an individual at time ¢, and let z; denote a latent component that evolves according
to a state-dependent stochastic process. The observed data, for a given individual, are generated
by:

Y = 24 + €y, (1)
2 = pu(2e-1) + 0 (ze-1)us, (2)
z1 ~ fom Uy ~ N(Ov 1)a €t ~ w'\/v (3)

where u; and e; are independent at all lags and independent of the initial z;, and periods range
from 1 to T

In this formulation, z; represents the persistent component of individual earnings, while e,
are transitory shocks. The innovations u; are standard normal, scaled by a state-dependent
volatility function o(z;_1), and propagated forward through a conditional mean function p(z;_1).
Both p and o are specified flexibly, either as low-order polynomials or neural networks, so that
the model nests the standard linear earnings process, but also allows for nonlinear and state-
dependent dynamics. The initial latent state z; is drawn from a distribution f,, which can itself
be parameterized using flexible location-scale families to capture cross-sectional heterogeneity
in initial conditions.

The distribution of transitory shocks, 1., is modeled flexibly. Alongside a Gaussian bench-
mark case, we allow for non-Gaussian specifications that capture excess kurtosis, as well as
specifications that introduce serial dependence through an MA(1) process. This flexibility en-
ables the model to accommodate a wide range of transitory earnings innovations, including
asymmetry and thick tails, which are commonly observed in administrative and survey data.

This structure nests an array of familiar models as special cases. Standard linear AR(1)
models with Gaussian shocks are obtained when the conditional mean pu(z;_1) is linear, the
volatility function o(z._;) is constant, and the transitory component 1., is jointly normally
distributed. At the same time, the specification is rich enough to encompass more complex
earnings processes that have been emphasized in recent empirical work. For example, Arellano
et al. (2017) highlight the importance of nonlinear persistence and state-dependent volatility,
while Meghir and Pistaferri (2004) provide evidence of heterogeneity in both the magnitude and

persistence of permanent and transitory shocks. Our framework is designed to capture precisely



these features, allowing for greater flexibility while nesting a number of existing models. In
addition, we will show in Section 6 that it can be augmented to allow for the presence of latent

time-invariant heterogeneity.

Remark 1. (Conditional skewness) Model (1)-(2)-(3) imposes that z; is Gaussian given z;_q,
thus ruling out non-Gaussian features in the conditional distribution such as conditional skew-
ness (Arellano et al., 2017). However, note that, even when both u, and e, are symmetrically
distributed, the combination of a nonlinear drift and conditional volatility in the persistent com-
ponent introduces higher-order dependence and conditional asymmetries in the distribution of
earnings changes. In particular, the model can generate conditional skewness and excess kurto-
sis over multiple periods ahead, even when one-period-ahead shocks are Gaussian. Our empirical

application in Section 7 will illustrate this.

3 Variational Inference

The model given by equations (1)-(2)-(3) is parametric, indexed by the parameters pu(-), o(-),
a, and 7. For conciseness we will use 6 = (u(+),0(-), a) to denote all the parameters that index
the distribution of the persistent component z;, whereas v indexes the distribution of transitory
shocks e;. The econometrician seeks to learn these parameters based on a sequence of outcomes
Y1, ..., yr, available for a collection of individuals, although we omit the individual dimension

from the notation for simplicity.

3.1 Issues with Evaluating the Likelihood

The log-likelihood of the observed data for a given individual can be expressed as
ﬁOw(?/l:T) = log Pe,v(ylzT) = 10gjf9(21:T) @Dv(ylzT - Zl:T) dz.r, (4)

where fp(2z1.1) denotes the density of z.p = (z1, ..., zr) over latent trajectories parameterized
by 6, and 1, (y1.0 — z1.7) is the conditional density of outcomes given z1.7, parameterized by
7, linking latent states to observed data. Equation (4) shows that evaluating the marginal
log-likelihood Ly ~(y1.7) requires integrating over all possible latent trajectories. However, this

task is generally infeasible in realistic models of earnings dynamics.!

'In this paper, we view the log-likelihood function as the target objective to optimize. This presumes
that the conditions for consistency of maximum likelihood are satisfied. An important necessary condition is
identification, which may be challenging to establish in these models, see among others Hu and Schennach
(2008) and Arellano et al. (2017).



To see the difficulty, consider evaluating (4) for one individual. Since there are T latent
variables, z1, ..., 27, numerical quadrature or grid-based methods become inaccurate as soon as
there are more than a handful of periods. A common approach is to resort to simulation-based
techniques such as importance sampling, particle filtering, or Markov Chain Monte Carlo, see
for example Creal (2012) for a survey of particle filter methods and Arellano et al. (2024) for
an application in the context of earnings and consumption dynamics. However, while such
approaches perform well in the case of a single time series, evaluating as many integrals in (4)
as there are individuals in the sample represents a formidable challenge. As a result, state-
of-the-art algorithms for nonlinear models of earnings dynamics based on these techniques are
currently limited to data sets of moderate dimension, especially regarding the number of time

periods.

3.2 The Evidence Lower Bound

To address the computational challenges of exact likelihood-based methods, we study a vari-
ational inference approach. Instead of evaluating or maximizing the marginal log-likelihood
directly, variational inference reframes the problem as an optimization of the so-called evidence
lower bound (ELBO):

Jo(aar) by (o — 217) | (5)

Eov6W1T) = Egyerr i, [log
’Y¢< 1 ) q¢(z1:7 | y1:7) Q¢>(21:T’91:T)

where gy(z1.7 | y1.7) is some density over the latent states zy, ..., zp — the so-called variational
posterior density — indexed by a parameter vector ¢, and the expectation is taken with respect
to qs(z1.7 | y1.7) for a fixed sequence of observations y.r.

To understand the logic behind the maximization of (5), and to see that the ELBO is
indeed a lower bound on the log-likelihood function, it is useful to introduce some notation.
Interpreting fy as a prior on the states z1, ..., 27, denote the associated posterior density as, by

Bayes’ rule,

Jo(zrr)Vy (11 — 21:7)
Poolnt) )

Note that, since the likelihood function Py, (y1.r) appears in the denominator of (6), the poste-

p@,'y(Zl:T ‘ ylsT) =

rior density is typically highly challenging to calculate, for the reasons mentioned in the previous
subsection.

Next, let KL[q || p] denote the Kullback—Leibler divergence between ¢ and p; that is,

KLfg ] = [ log (ZE;) 2(2)de.
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Observe that the ELBO can equivalently be written as

fe(ZLTWv(yl:T - Zl;T) ]
qo(21.7 | y1.7)

597%¢(y1:T) = Eq¢(zlzT|yl:T) llog

fo(z1.7)Y~ (Y17 —21.7)
Po,~(y1.1)

de\ 1.7 | Y1.T
=1log Po~(y1.1) — Eg,zror [w11) [log o211 | Y1) ]’

where we have used that Py, (y1.7) does not depend on the latent states z,.0. Hence, using the

expressions of the posterior density and KL divergence, we obtain the following key identity:

59,%¢(91:T) = ‘6977(3/1:T) - KL[%(ZI:T | yl:T) ||p9,7(21;T ‘ yl:T)]- (7)

Equation (7) shows that the ELBO is equal to the log-likelihood function minus a penalty
term that is equal to the KL divergence between the variational posterior density g4 and the
true posterior density. This characterization has several important implications, the first one
being, since the KL divergence is non-negative, that the ELBO is indeed a lower bound on the
log-likelihood.

A second implication of (7) is that maximizing the ELBO with respect to ¢, for given
parameters 6 and -, is equivalent to finding the variational posterior g4 that is closest, in a KL
sense, to the true posterior evaluated at ¢,7. When the variational family g4 is very flexible
(e.g., when ¢ is high-dimensional), one expects the resulting KL term to be small, and the
ELBO and log-likelihood to be close to each other. Indeed, in the case where the variational
family includes the true posterior, ELBO and log-likelihood coincide. However, for a restricted
variational family such as Gaussian densities, the difference between the log-likelihood and the
ELBO (the so-called “ELBO gap”) may be substantial.

A third implication of (7) is computational. Note that the likelihood function Py (y1.7),
which is an intractable integral, does not appear in (5). By replacing the log of an expectation
with an expectation of logs in (5), relying on the ELBO instead of the log-likelihood transforms
the problem into one that is computationally tractable and yields stable gradient estimates.
Derivatives of the objective function can now be computed and averaged over, rather than
requiring integration over the full latent space. This can provide important computational

advantages compared to traditional methods such as the EM algorithm, as we now illustrate.

3.3 The EM Algorithm: Alternating Optimization

A common strategy in latent variable models is to rely on the Expectation-Maximization (EM)

algorithm. To relate the latter to the ELBO, suppose that we take ¢ = (#',7'), for some



hypothetical values of the parameters, and set g4 to be the true posterior at those parameters;
that is,

do(z1.r | y11) = Por v (217 [ Y1) (8)
By (7) we have

Eoyory (1) = Lo (yr1:0) — KL[po o (217 | y1:7) | Doy (210 | 92:7) |- 9)
The EM algorithm maximizes & ¢ (y1.7), by alternating between two steps:

« Maximize with respect to ¢, (E-step).

Given 6,7, we see from (9) that the maximum with respect to ¢',+ is achieved when
pO/,'y’(Zl:T ‘ yl:T) = p@,'y(Zl:T ‘ yl:T)-

o Maximize with respect to 0,7 (M-step).

Given ¢', 4/, the bound (9) attains its maximum when 6,y maximize
Ep@/’,Y/(ZLTIyl;T) [log f@(zlzT),lvb’Y(ylzT - Zl:T)] .

Notice that the ELBO, and hence the log-likelihood, are weakly increasing in each (E,M)
iteration. The EM algorithm can thus be used as an alternative to gradient-based maximiza-
tion of the likelihood (Dempster et al., 1977). However, the E-step requires evaluating the
exact posterior py /(217 | y1.7), which is generally intractable. Sampling-based approximations
(using, e.g., MCMC or particle filter methods) can be employed, but they are computationally
costly, difficult to differentiate, and not easily integrated into optimization routines that rely

on automatic differentiation and gradient-based updates.

3.4 Variational Inference: A Fully Differentiable Approach

Variational inference relies on a different approach. The key idea is to replace the exact posterior
in (8) with a parameterized approximating family ¢, € Q4. Instead of computing the true
posterior in the E-step, we optimize the variational parameters ¢ to minimize the KL divergence

to the (unknown) true posterior. This is equivalent to maximizing the ELBO:

Jo(z1m)y (Y10 — 21:7)
max &, 7) =max E, ., .14 |10 2l
0y, 97’Y7¢(y1.T> 8y, q¢ (217 | Y1:7) g (]qﬁ(Zl:T | ylzT)

A challenge is then to compute gradients of the ELBO with respect to the variational parameters

(10)

¢, since the expectation Eq, (., |y,.)[-] depends on ¢, preventing the use of standard gradient-

based optimization.
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The Reparameterization Trick: Enabling Gradient-Based Optimization. The repa-
rameterization trick resolves this difficulty by rewriting random draws from ¢, as deterministic
transformations of the variational parameters, ¢, and a vector of auxiliary noise random vari-
ables, v:

zir = 9(d,viyrr), v~ w(v).
For example, if q,(21.7 | y1.7) is a Gaussian density with mean f,, and variance X, then 2.0 =
pg + Lov with v ~ N'(0,1) and LgLj = X,

This transformation allows gradients to pass through the expectation, since:

f9 (g<¢7 v; yl:T»w'y (ylzT - g(¢7 v; yl:T)) ) ]
Q¢(g(¢a viyrr) | yir) ’

V¢597%¢(y1:T) = ]Eﬂ(v) [V¢ <10g (11)

This enables Monte Carlo gradient estimates, and makes the variational objective amenable
to automatic differentiation. The reparameterization trick thus provides a fully differentiable
alternative to sampling-based methods, allowing variational inference to be integrated with

modern deep learning frameworks and deterministic or stochastic gradient optimization.

Amortization. In large datasets, it may be challenging to optimize separate variational
parameters ¢ for each observation sequence y1, ..., yr. Amortized variational inference relies on

a model
¢ = h”](yl:T)a (12)

where the global parameter 7 is shared across observation sequences y;.7. Model (12) is referred
to as a recognition model or encoder in the literature. In applications, h,, is typically specified as
a neural network or other flexible function. Arguments often provided in favor of amortization
are that it shares statistical strength across observations, reduces the number of free parameters
to be estimated, and enables fast computation by evaluating h,(y;.7) rather than re-optimizing
a new ¢ for each observation sequence. Amortization is a key feature of variational autoencoders

(Kingma and Welling, 2014), a leading application of variational inference.

A Quasi-Likelihood Interpretation. Variational inference relies on maximizing the

ELBO. Equivalently, this can be interpreted as maximizing the following quasi-log-likelihood:

gg,'y(ylzT) = mgx 50,%¢(y1;T)

= Lo~(y1:1) — Igéiél(ﬁ KL[go (211 | y1:7) | Poy (2 | 91:7) |- (13)

2Note that both 1e and Yy may, and typically will, depend on the observation sequence yq, ..., yr.
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Estimates of parameters 6,y are then obtained as

(0,7) = max & (Y1)

The second term on the right-hand side of (13) acts as a penalty, which distorts the varia-
tional inference estimates away from the maximum likelihood estimator. In particular, unlike
the expected log-likelihood, the expected quasi-log-likelihood £(6,7) = ]E[gé:i7 (y1.7)] is not max-
imized at true parameter values in general, and variational estimators do not converge to true
parameter values in large samples. This issue is the main challenge in applying and interpreting
variational inference, and our goal in the rest of the paper is to evaluate the performance of the

method on simulated and empirical data.

4 A Linear Gaussian Model with Closed-Form
Likelihood and Posterior

To benchmark our variational approximations and evaluate their accuracy in a controlled set-
ting, in this section we consider a simple linear Gaussian specification of the latent variable
model introduced in Section 2. In this version, the persistent and transitory components follow
linear Gaussian processes, allowing for closed-form expressions of the likelihood and posterior
distribution. This setup serves as a benchmark for evaluating variational inference on nonlinear

models in later sections.

4.1 The Linear Gaussian Model

We consider the following specification of the data-generating process:

Yo = 2+ €, (14)
2 = pzi_1 + ouy, (15)
2 ~N(0,02), u ~N(0,1), e ~N(0,0?2). (16)

Here, z; is an unobserved latent state evolving as an AR(1) process with innovation variance o2,

and y, is the observed outcome (e.g., log-earnings), measured with additive Gaussian transitory
shocks of variance o2. The initial condition is assumed to be normally distributed, z; ~
N(0,02), which allows for non-stationary initial conditions. Observations are ii.d. across
individuals (although we again omit the individual subscript from the notation for simplicity).
To map this simple model to the notation of the earlier sections, here 6 includes p, o, and o, ,

and v = o,.
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Closed-Form Likelihood. Since the model is linear and Gaussian, the joint distribution

of latent states and observations is multivariate Gaussian. Specifically, we have

21T ~ N(07 22)7 (17)
YT | 21T~ N(leT7 UEIT)v (18>
where
Vi Vi Vi ptY
pVi Vs pVo oo pT2V
.= Vi pVh Vs o p" VR,
P T A VA A VA V8
for (assuming |p| < 1)
1 — p2(t71)

Vt:p2(t_1)a§1+02 t=1,...,T.

1—p% 7
The marginal likelihood of the data is then obtained by integrating out the latent variables,

which gives
Y1.7 ~ N(O, Zz + O‘SIT). (19)

Therefore, the log-likelihood function is:

T 1 1 _
Lyoo.00Yrr) = —3 log(2m) — 5 log |2, + o2 I7| — inT(EZ +0Ir) g (20)

This expression can be evaluated exactly, as 37! has a known tridiagonal structure that reflects

the AR(1) dynamics. Specifically, we have

L. _p

o2 = o? o?
IV V) 0

o? o? o?
nt = 0 N o ST (21)

o? o? '
_r
o2
p 1
0 L
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True Posterior Distribution. Since the joint distribution of (z1.7,y1.7) is Gaussian, the

posterior p(z1.7 |y1.7) is also multivariate Gaussian:

21 | Y ~ N(Mz|y7 Ez\?J)) (22)

where the mean and covariance are given by

faly = 2(3: + 02I7) 'yr, (23)
Say = B2 — Na(Xs + 02 0r) T, (24)

with I7 denoting the T" x T identity matrix. These expressions show that the posterior mean
is a linear smoother of the data, and that the posterior covariance shrinks relative to the prior
covariance as a function of the signal-to-noise ratio. Note that, while the posterior mean g,
is a linear function of the observed data y;.7, the posterior covariance ., depends only on the
model parameters and not on the observations sequence.

The posterior covariance matrix ., inherits the Markovian structure of the latent process.

1
zly’

precision 7! (which is tridiagonal due to the AR(1) dynamics) and the observation precision

Its inverse, the posterior precision matrix QP = ¥~ ' is obtained as the sum of the prior

—27 .
O, IT.

Qrest = 3ot 4 02 (25)

Hence, by (21), the posterior precision matrix remains sparse and tridiagonal, reflecting the

fact that each state z; interacts directly only with its neighbors z;_; and z;,; in the likelihood.

4.2 Variational Posteriors in the Linear Gaussian Model

Implementing variational inference requires defining the variational posterior family g4 to opti-
mize over. We describe here the variational posteriors that we will use in the benchmark model

and in the nonlinear frameworks in subsequent sections.

Gaussian Variational Posterior.  Since by (22) the true posterior distribution p(z1.7 | y1.7)
in the linear-Gaussian model is itself multivariate normal, the Gaussian family is a natural
choice for g, € Q4. That is, for y, € RT and X, € R™*T we set the variational parameter as

¢ = (pg, Xy), and the variational posterior density g4 as the N(u,, £,) density:

1 _
Q¢>(Z1:T ’ yl:T) = W eXP(—%(Z’l:T - Mq)TZq 1(2’1:T - Mq)) : (26)
q

14



In the linear-Gaussian model, with the choice (26) of variational density, the evidence lower
bound (ELBO) is available in closed form, as

1 _ -
5/9,0,021 Oetig,Sg (yrr) = D) [Je Qtr(Zq + (Mq_ylzT)(Mq - yl:T>T) + tr(X] 1<Zq + Mqﬂl))
+log|%.| + T'log o — log |Eq|] + constant, (27)

where the constant term is irrelevant for optimization. The objective function in (27) is differ-
entiable and can be optimized using standard gradient-based methods.

For implementation, we parameterize the precision matrix E;l directly using a Cholesky
factor, and we compute gradients using the reparameterization trick. Furthermore, we rely on
amortized variational inference to specify how both p, and ¥, depend on observations y.r.
Following a common practice in the literature (e.g., Kingma and Welling, 2014), we specify
the elements of p,(y1.7) and the Cholesky factor of ¥,(y1.7) as feedforward neural networks.?
In particular, this implies that the model used in estimation features a very large number of
parameters. We will rely on the same approach for nonlinear models in subsequent sections.

A summary of the estimation algorithm is:

1. Initialize i, and a Cholesky factor L, such that >, = LqL;,
2. Sample z1.7 = py + Ly, with v ~ N(0, Ir),

3. Evaluate the ELBO and its gradient,

4. Update (pq, L) using (stochastic) gradient descent.

Appendix B provides further details about implementation.

Restricted Gaussian Variational Posteriors.  The Gaussian variational family in (26)
leaves the parameters u, and X, almost unrestricted.* However, it may be appealing to impose
some of the features of the model’s true posterior on the variational family. By reducing the
number of parameters involved, restrictions on the variational family may improve estimation
accuracy.

We consider three types of restrictions on the Gaussian variational family: under tridiagonal

precision, a hidden Markov structure, and diagonal precision, respectively. To motivate the

3We first use a shared linear layer with 32 units and a ReLU activation function. The output is then passed
to a linear layer without activation to get j4, and to a second linear layer with a softplus activation for the

elements of 3.
4Except for some mild restrictions on their dependence on yi, ..., y7, modeled using flexible neural networks.
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first restriction, note that, by (21), the true posterior in the linear-Gaussian AR(1) benchmark
model has a tridiagonal precision matrix. It may thus be appealing to impose this restriction on
E;l. Without such a restriction, the variational posterior may introduce spurious dependencies
between distant time periods in order to better fit the observed data.

To motivate the second restriction, note that the model has a hidden Markov structure, so

the true posterior density satisfies:

T
p(ZI:T | yl:T) = p(Zl | yl:T) Hp(zt | Zt—1, yt:T)7

t=2
where the last part only depends on future observations y,, ..., yr. Indeed, conditional on z;_1,
past outcomes y;.;_1 are redundant in predicting z;, since their information is mediated entirely

through z;_;. This restriction can be incorporated into the variational family as well,

q(z1r [yrr) = q(z1 [ y17) 1_[ q(2t | 21, Yer)- (28)

In practice, conditioning directly on the entire future sequence ¥y, may be computationally
burdensome, especially in long panels. As a tractable compromise, one may instead condition on
summary statistics of y,.7 that preserve essential forward-looking information. Examples include
the mean of y;.r or rolling-window averages. These summaries reduce dimensionality while still
allowing the variational posterior to capture asymmetry and persistence in the observation
sequence.”

We will also consider a third type of restriction, imposing that the variational posterior
covariance, and hence the posterior precision as well, are diagonal. This restriction imposes
that all off-diagonal elements of Eq_l are equal to zero, hence requiring that, under g4, the
z’s are independent of each other. While easy to enforce in practice, this restriction does not
hold under the model, since the first off-diagonal elements of (21) are all non-zero except when
p = 0. Independence assumptions (so-called “mean-field” approximations) are often imposed in
applications of variational inference. However, we will see that in models of earnings dynamics

they can lead to substantial biases on parameter estimates.

4.3 Results for the Linear Gaussian Model

To evaluate the performance of different variational posterior approximations, we conduct sim-
ulation experiments using data generated from Model (14)-(15)-(16). This allows us to directly

assess how well different estimators recover the true parameters.

5Note that the first two types of restrictions can be combined, and one can jointly enforce that Z;l(yl;T) is

tridiagonal, and that its elements and the elements of p4(y1.7) satisfy the hidden-Markov restrictions (28).
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Data-Generating Process. In the benchmark design, the latent process z; follows an
AR(1) with persistence parameter p = 0.9. The initial state has standard deviation o,, = 0.4,
innovations are scaled by ¢ = 0.2, and the transitory component is normally distributed with
standard deviation o, = 0.23. These parameters are chosen to approximately match estimates
based on PSID data (e.g., Blundell et al., 2008, Arellano et al., 2017).

Estimation Model and Variational Family. @ While the true data-generating process is
governed by a first-order linear Gaussian model, in the estimation procedure we allow for greater

flexibility by specifying the conditional mean and volatility using second-order polynomials:

(2em1) = po + paze—1 + poz;q,  0(z—1) = log (1 + exp (00 + o121 + 022 1)) -

We also specify the distribution of the transitory component e; and the initial state z; to be
normal. This setup allows us to assess whether the variational approach can correctly recover
the linear DGP by estimating the other polynomial coefficients pyg, s and o1, 09 to be close
to zero. Lastly, we compare the results for various choices of variational posterior families, as

described above.

Results.  Our findings are presented in Figure 1 and Table 1. We find that variational in-
ference based on an unrestricted Gaussian variational posterior performs well in recovering the
parameters of the model (first row in Table 1). Imposing a tridiagonal precision matrix leads to
very similar estimates (second row).% Imposing a hidden Markov structure on the variational
posterior, as in (28), shows equivalent performance to the unrestricted and tridiagonal specifi-
cations (third row). Hence, imposing restrictions on the variational posterior that are satisfied
by the true posterior (at true parameter values) leads to accurate inference in this setting.
However, imposing that >, is diagonal, which is a feature that is not present in the true
posterior under the DGP, leads to biases (fourth row in Table 1). In particular, the estimate of
persistence of z; is attenuated, with the autoregressive coefficient estimated at 0.75, compared
to the true value of 0.9 in the DGP. This downward bias reflects the inability of the diagonal

6The choice between the two is a practical trade-off. The unrestricted approach allows for a single Cholesky
decomposition of a dense covariance matrix but scales quadratically in the time dimension 7', which can become
computationally expensive in long panels. In contrast, the tridiagonal specification exploits the sparsity induced
by the Markov structure and scales linearly in T', but it typically requires a separate Cholesky decomposition
for each observation or variational update step, depending on the implementation. The relative computational
efficiency of the two approaches therefore depends on the computational environment, the size of T, and the

optimization strategy used.
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Figure 1: Simulation Results in the Linear Gaussian Model

Note: The figure plots the conditional mean and volatility functions of equation (2) implied by the
simulated linear Gaussian DGP, together with their estimated counterparts obtained under four vari-
ational posterior specifications. Each panel shows the true functions (solid lines) and the estimated

ones (dashed lines) over the support of z;_1.

specification to capture temporal dependencies in the latent states. In addition, the transitory
shock standard deviation is underestimated, while the innovation standard deviation of the
latent process is overestimated. These distortions indicate a misallocation of uncertainty, as
the simplified posterior fails to propagate information across time and compensates by shifting
variation across the latent components.

Lastly, to put these findings into perspective, we report in the last row of Table 1 estimates
that are based on a Gaussian model without a transitory component. Even in the benchmark
AR(1) model, omitting transitory components in observed log-earnings leads to serious esti-
mation bias. Specifically, the estimated persistence parameter is attenuated (as expected in
the presence of classical measurement error) and the innovation volatility is systematically un-
derestimated. This underscores the critical importance of accounting for transitory shocks in

models of earnings dynamics, as has been extensively demonstrated in the literature.

4.4 Mean-Field Approximation in the Linear Gaussian Model: An-
alytical Insights

To provide intuition about variational inference in the linear Gaussian model, it is useful to

note that, for a Gaussian variational density with parameters ¢ = (pg, £,), the KL divergence
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Table 1: Simulation Results in the Linear Gaussian Model

Parameter Mo M1 U2 oo o1 09 (% Oe

DGP 0.00 0.90 0.00 -1.48 0.00 0.00 0.40 0.23
Variational posterior
(1) unrestricted Gaussian 0.00 0.90 0.00 -1.48 -0.01 0.00 0.40 0.23

(2) tridiagonal 0.00 090 0.00 -1.48 -0.01 0.00 0.40 0.23
(3) hidden Markov 0.00 090 0.00 -148 0.00 0.02 0.40 0.23
(4) diagonal 0.00 0.76 0.00 -1.00 0.00 0.01 0.44 0.13
Ignoring transitory shocks

(5) 0.00 0.70 0.00 -0.85 -0.01 0.01 046 -

Note: The table reports the parameter values used in the simulated DGP and the corresponding
estimates obtained under four variational posterior specifications. The estimation model allows for
quadratic terms in the conditional mean and log-volatility functions. In the last specification, it

abstracts from transitory shocks.

has the following analytical expression:

KL [Qqs(Zl;T | yl:T) || p@,'y(Zl:T \ yl:T)]

1 12,11 _ T
-1 (10g = (230,) + (aty— 0) 25 G - Mq)) ,
q

where 1., and X}, are given by (23) and (24), respectively.
Suppose that p, is unrestricted. Further, following the mean-field approach, suppose that
>, is diagonal. Then, denoting as ag’t the diagonal elements of ¥,, and using the notation

_ . .. . . . t
Qpost — Z}Z|; for the posterior precision matrix, with diagonal elements (wf**")?, we have

mgl KL[q¢(ZlcT ‘ yl:T) ” pG,’y(Zl:T ‘ yl:T)]

Hqy2q

1 1 ost 4 2 I post\2 2
IR ) <_ log [Q2P%] — ;bg o, — T+ ;(wt oy,

1 S os
=3 (—log |QQPst| 4 Zlog(wf t)Q)

t=1
1. |diag Pt
= —lopg ——
2 2 |Qp0st’ ’

where diag QP is the diagonal of QPost,

19



Hence, the quasi-log-likelihood in (13) equals

g;,o',oe,ozl (y12T>
T 1 ) 1+ o 1 1 |diag 2POst|
= 3 log(2m) — B log |2, + o Ir| — iny(Zz +o.lr) yl::C 5 log o |Qrost| (29)
1og—lik‘eflihood pe;;lty

The penalty term in (29), which is always non-negative, does not depend on the data, only on
the parameters. It is a measure of dependence in QP°*, and it is equal to zero when QP is
diagonal, that is, when the latent types are independent in the true posterior. In the linear
Gaussian model analyzed in this section, it follows from (21) and (25) that the penalty is
an increasing function of the autoregressive coefficient |p|. When persistence is high, as is
typically observed in earnings data, mean-field approximations based on a diagonal variational
posterior covariance matrix distort the variational estimator away from the maximum likelihood
estimator.” Making the variational posterior covariance more flexible is important to reduce

bias, as our results based on simulated data show.

Remark 2. [t is interesting to note that the Gaussian variational family is not restrictive in

the linear Gaussian model. Consider as an example the mean-field case where one assumes that

!

Q(Z'LT | Z/l:T) = H Qt(Zt \ y1;T)-

t=1

Suppose one mazimizes the ELBO with respect to unrestricted marginal densities qq, ..., qr,
without imposing they are Gaussian. In that case, it can be shown using variational calculus
that the q;’s that maximize the ELBO satisfy

g exp(E,_, logp),

where Ey_, logp is the expectation of the log-posterior density with respect to all variational
marginal densities except the one in period t (and oc denotes “proportional to”). Since the
log-posterior is quadratic in zi, ..., zp (see (22)), it then follows that q; is Gaussian. Hence, in
a linear Gaussian model, relying on Gaussian variational posteriors is not restrictive, even in
a mean-field approach. However, Gaussianity of the variational family may be restrictive in

nonlinear models, which we turn to in the next section.

“Further, note that while the mean-field approach does not restrict the variational posterior mean, since
Hq = iy, it forces the variational posterior variances to be equal to the diagonal elements of the precision

e 32 (,,POStY—2
matrix, oy, = (w; )%
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5 A Nonlinear Non-Gaussian Model

We now extend the linear Gaussian model in two directions. First, we introduce nonlinearity in
the latent process by incorporating a nonlinear conditional mean and state-dependent volatil-
ity. Second, we relaxr the Gaussian assumptions for the initial latent state and the transitory

component.

5.1 The Nonlinear Model

We focus on model (1)-(2)-(3), where we allow both the latent mean function p(z;_1) and the
state-dependent volatility function o(z;_1) to be nonlinear, while adding non-Gaussian features
in both the initial state z; and the transitory shock e;. The nonlinear functions p(z;_1) and
0 (z¢—1) capture deviations from the linear AR(1) process that we studied in the previous section.

To flexibly depart from Gaussianity, we model the transitory shock e; and the initial latent
state z; as sinh-arcsinh transformations of a standard normal random variable (Jones and

Pewsey, 2009). The resulting cumulative distribution functions are

U, (e) = ®(sinh (1, asinh(e/v1))), (30)
F.,(z) = ®(sinh (72 asinh(z/71))) , (31)

where (11, 19) and (71,72) are scale and tail-shape parameters for e, and z;, respectively, and
®(-) denotes the standard normal CDF. This transformation retains zero mean and symmetry
but adjusts tail thickness: values 1y < 1 (or 75 < 1) generate heavier tails and positive
excess kurtosis relative to the Gaussian benchmark, while 15 > 1 yields thinner tails. The scale
parameters 1, and 7, control dispersion, allowing independent tuning of standard deviation and
tail behavior. This parameterization provides a tractable way to match symmetric empirical
distributions with excess kurtosis.

The resulting model departs from the benchmark state-space setting in several important
ways: the presence of nonlinear mean and volatility breaks the linear-Gaussian assumption, the
non-Gaussianity in z; and e; implies that the posterior distribution over the latent path z;.p
is no longer Gaussian, and its precision matrix is no longer tridiagonal in general. Moreover,
the stochastic volatility term o(z;_1) introduces multiplicative heteroskedasticity, which creates
nonlinearities in the conditional likelihood and undermines the conjugacy that made posterior
calculations analytically tractable in the linear Gaussian case.

In this context, our goal is to assess whether a variational inference approach based on a

Gaussian variational family — with or without additional structure — is able to correctly recover
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Table 2: Parameters for the Simulated DGP in the Nonlinear Model

Parameter  Value Description

(1) —0.25 + 0.11log [1 + exp (55 (0.9z-1 + 0.25))]  hockey stick shape

o(z-1) log (1 + exp (—1.55 + 0.3527_,)) quadratic volatility function

(ey) ® (sinh (0.47 asinh(e;/0.033))) trans. shock o, = 0.16, kurt, = 10.0
f(z1) ® (sinh (0.89 asinh(z/0.34))) initial state o,, = 0.40, kurt,, = 3.3
N 30,000 number of individuals

T 6 number of periods

the model parameters despite the non-Gaussianity of the posterior.

Parameterization. To calibrate the DGP, we choose parameters for the transitory compo-
nent e; to match a standard deviation of 0.16 and a kurtosis of 10, and for the initial latent
state z; to match a standard deviation of 0.4 and a kurtosis of 3.3, in line with Arellano et al.
(2017). This yields parameter values (11, 1) = (0.033,0.47) for e, and (7y1,72) = (0.34,0.89)
for z;.

For the nonlinear conditional mean function p(z;_1), we adopt a specification designed to
capture a hockey stick shape: the left tail of the distribution is nearly flat (mimicking a floor in
earnings changes, e.g., due to minimum wages), while the right side increases with a persistence

parameter close to 0.9. Specifically, in the DGP we assume that
i(z-1) = —0.25 4 0.1log [1 + exp (55 (0.92,-1 + 0.25))], (32)

which is strictly increasing and smooth (see Figure 2). We maintain a quadratic innovation

volatility function of the form
o(2-1) = log (1 + exp (—1.35 + 0.3527_,)) . (33)

Finally, we simulate N = 30,000 individuals over T" = 6 periods. The parameters of the model
are summarized in Table 2.

In estimation, we allow for more flexible functional forms:

p(z—1) = ap + aq log [1 + exp (a% (Mo + p12e-1 + M2Zt2,1 - Oéo))] ) (34)

o(z—1) = log [1 + exp (ao + 01221 + 0'22,5271)] , (35)
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Figure 2: Simulation Results in the Nonlinear Model

Note: The figure plots the conditional mean and volatility functions in equation (2) implied by the
simulated nonlinear DGP, together with their estimated counterparts obtained under four variational
posterior specifications. Each panel shows the true conditional mean or volatility (solid lines), as

specified in (32)—(33), and their estimated counterparts (dashed lines) across the support of z;_1.

and compare the performance of the same set of variational posteriors as in the benchmark
model. In all cases, we optimize the evidence lower bound (ELBO) using reparameterization-

based gradient ascent.

5.2 Results for the Nonlinear Model

Figure 2 and Table 3 summarize the estimation results for the nonlinear specification. The
unrestricted Gaussian posterior, as well as the structured Markov posterior, capture both the
central tendency and dispersion of the latent persistent component z;. The tridiagonal ap-
proximation, while slightly less flexible, performs similarly. All three approximations recover
the true parameters of the process of z; quite well, including the curvature in the conditional
volatility function, as can be seen from the first three rows of Table 3.

All these variational estimators are based on model (34)-(35) that has a parsimonious para-
metric structure. In applications of variational inference in machine learning, it is common
to entertain much richer specifications based on neural networks. In the next-to-last row of
Table 3, and in Figure 2, we report estimates based on such a specification where pu(-) and
log o(-) are specified as feedforward neural networks. We can see that, for the sample size that
we consider (N = 30,000 and 7" = 6), this highly flexible model gives similar estimates to the
parametric specification (34)-(35).
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Table 3: Simulation Results in the Nonlinear Model

Parameter Qp o o 11 Lo 0o o1 09 0, kurt,, o. kurt,

DGP -0.25 0.10 0.00 0.90 0.00 -1.35 0.00 0.35 040 3.3 0.16 10.0
Variational posterior

(1) unrestricted Gaussian -0.30 0.23 -0.06 1.00 -0.06 -1.26 0.03 024 041 3.3 0.14 3.0

(2) tridiagonal -0.30 0.19 -0.03 094 -0.03 -1.28 0.06 023 041 33 014 29
(3) hidden Markov -0.33 033 -0.14 1.11 -0.09 -1.24 0.05 0.19 041 33 014 3.1
(4) diagonal -0.26 0.19 -0.04 094 -0.06 -1.12 0.07v 0.23 042 33 0.08 3.0

Neural Network model

(5) unrestricted Gaussian -0.27 0.14 -0.01 089 0.00 -1.26 0.08 0.22 041 3.5 0.14 3.1
Ignoring transitory shocks

(6) -0.24 0.19 -0.04 092 -0.08 -1.07 0.09 0.22 043 34 - -

Note: The table reports the parameter values used in the simulated nonlinear DGP and the corre-
sponding estimates obtained under five variational posterior specifications. The estimation model
follows equations (34)—(35), which allow for nonlinear conditional mean and state-dependent volatil-

ity functions, and is applied to data generated with sinh—arcsinh innovations for z; and e;.

In contrast, when using a mean-field variational posterior with a diagonal Gaussian structure
(fourth row in the table) or using a model that ignores transitory shocks (last row), we find
that the approximation fails to recover the mean and volatility functions accurately. In both
cases, the estimated slope of the conditional mean function is attenuated relative to the true
process, resulting in a downward bias in persistence.

The same two specifications also perform poorly in recovering the conditional variance of the
latent process. Both produce variance estimates that are too high across the state space relative
to the true state-dependent volatility. By comparison, the other variational approximations we
consider, including the unrestricted Gaussian, the tridiagonal precision matrix specification,
and the conditional Markov specification, match the true conditional volatility function quite
well over the range of latent states, albeit not perfectly.

These findings highlight an important practical insight: even when the true posterior is
not Gaussian, variational approximations based on a Gaussian family can remain effective in
recovering the parameters of the process of interest. At the same time, restrictive indepen-
dence assumptions in the posterior or failure to incorporate transitory components can lead to
substantial distortions in both persistence and volatility.

However, performance is not uniformly good across parameters. Focusing on the last two
columns of Table 3, we see that the unrestricted and structured Gaussian variational specifica-

tions slightly underestimate the variance of transitory shocks, and more importantly that they
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fail at capturing the high transitory kurtosis. In fact, all methods lead to the same — incorrect
— conclusion that transitory shocks are approximately normal. This highlights another impor-
tant insight regarding variational inference in this setting, as Gaussian specifications lead to
incorrect estimation of features of the distribution of transitory shocks. In Section 8 we will
explore several approaches to alleviate this issue.

Lastly, regarding computational cost, the nonlinear model is estimated in 3 minutes and 30
seconds.® Note that this computational cost has to be assessed in view of the sample size of
30,0000 individual units and 6 periods.

5.3 Posterior Distributions

To better understand the behavior of different variational posterior families, we examine the
posterior distribution p(zy.r | y1.7) directly in a simple two-period setting with 7' = 2. For
this exercise, we set the model parameters to their true values, and we fix observations at
(y1,y2) = (—0.1,0.1). We then compare the exact posterior p(zi, 2o | y1,y2) with the best fit
within each variational family, obtained by minimizing the KL divergence between the true
posterior and the approximating distribution. In addition to showing the overall posterior
density, the contour plots in Figure 3 also report the mean of the distribution together with
the associated covariance ellipse whose axes pass through the posterior mean (the black dot in
the plot). The orientation of the major axis reflects the correlation between z; and zo: a tilted
ellipse indicates that the posterior recognizes the dependence across periods, while a vertical or
horizontal axis would imply independence.

In the top panel of Figure 3 we show posterior contour plots in the benchmark linear
Gaussian model. Both the unrestricted Gaussian and hidden Markov specifications capture
the posterior shape well. Both variational posteriors also reproduce the tilt of the true el-
lipse, thereby capturing the covariance structure accurately. By contrast, the diagonal normal
posterior effectively forces the correlation to zero. This illustrates how mean-field restrictions
systematically understate the dependence in the latent dynamics, consistently with what we
documented in Section 4.

In the bottom panel of Figure 3 we show posterior contour plots for the nonlinear model,
whose true posterior takes on a distinct stretched kite shape. This geometry reflects the state-
dependent volatility, which stretches the posterior mass along both the vertical and horizontal

directions. The unrestricted Gaussian variational posterior cannot reproduce this structure,

8This is using an NVIDIA H100 graphic unit with 80GB of RAM. Memory usage is 2.5%, and CPU use is
3%.
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Figure 3: Variational Approximation to the True Posterior Density p(z1.1 | y1.7)

Note: The figure displays contour plots of the true posterior density p(z1, 22 | y1,y2) and its variational
approximations for a two-period setting with (y1,y2) = (—0.1,0.1). The top panel corresponds
to the linear Gaussian model, and the bottom panel to the nonlinear non-Gaussian model. Each
column shows a different variational posterior specification. In every panel, the black dot marks the
posterior mean and the ellipse illustrates the corresponding covariance matrix, whose principal axes

pass through the mean.

approximating it instead with tilted ellipses, while the hidden Markov variational posterior
also remains misaligned with the true contours. Looking at the mean and covariance, the
true posterior has its mode shifted to the top-left of the mean, indicating skewness that is not
captured by either the hidden Markov or the unrestricted Gaussian approximations. While
these two families succeed in reproducing the overall covariance ellipse correctly, they miss the
asymmetry in the placement of the mode.

This example underscores the limits of Gaussian variational approximation. When the true
posterior departs from elliptical shapes, neither the hidden Markov structure nor the unre-
stricted Gaussian specification are sufficient, and richer approximating families that allow for
nonlinear distortions of the latent space are needed to capture the geometry. In the bottom
right graph of Figure 3 we report contour plots of a transformed Gaussian variational posterior

(based on normalizing flows), which we will describe formally in Section 8. This approximation
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performs markedly better by matching the kite-shaped geometry of the true posterior and cap-
turing both skewness and dependence. This combination of accurate geometry and alignment

of higher-order moments highlights the appeal of richer posterior families in nonlinear settings.

6 Extensions: Serial Correlation and Heterogeneity

In this section, we show how the variational approach can be easily modified to handle two
important extensions of the baseline nonlinear model incorporating serially correlated transitory

shocks and time-invariant heterogeneity.

6.1 Serially Correlated Transitory Shocks

We first extend the earnings dynamics model to allow for serial correlation in the transitory
shock e;. Allowing for an MA(1) component in the transitory shock directly relates to the
empirical strategy of Meghir and Pistaferri (2004), who emphasize the importance of serial
correlation in transitory shocks for accurately characterizing the dynamics of income volatility.
Specifically, we introduce an MA(1) structure in the transitory component e;, while maintaining
the Markovian evolution of the latent persistent component z;. The data-generating process is

specified as:
Yy = 2t + €4, (36)
2 = p(2-1) + 0(z-1)uy, (37)
er =& + (&1, (38)
ZINfOH uth(Ovl)v gtwdjV' ( )

The new key feature is the presence of serial dependence in the transitory shock process: each
observed income y; now depends not only on the current latent state z;, but also indirectly on
the past component €;_1. This implies that y; is serially correlated even after conditioning on the
latent state z;. As a result, the likelihood function is no longer conditionally independent across
time given the latent states, and instead exhibits overlapping dependencies across multiple
periods. The likelihood function in this model still involves integrating over the latent process
211, see (4), however the form of the conditional density . (y1.7 — 21.7) is now more complex
due to the presence of the autocorrelated transitory component.

In models with serially independent transitory shocks, such as those considered in the previ-
ous sections, the structured variational posterior of the form (28) provides a faithful approxima-

tion to the true posterior. This structure is motivated by the fact that, in a first-order Markov
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latent process with conditionally independent observations, the distribution of z; given the past
latent state z;_; and the future observations y;.r captures all relevant dependencies. However,
when the transitory component follows an MA(1) process, the observation y; depends not only
on the current latent state z;, but also on the lagged shock €;_;. This term is only partially
revealed through v;_1, which itself contains ;5. As a result, the density p(z; | z;—1, y1.17) gen-
erally depends on a backward window of past observations y; ., 1 with L > 1, together with
future observations y..7. The information in these past observations cannot be fully mediated
through z;_; alone, and omitting them leads to a posterior that understates the dependence
between the latent state and the serially correlated noise.

To reflect this structure, we propose to specify a variational posterior that conditions each

latent state on its lag z;_1, and on a low-dimensional residual r; that captures relevant past

information:
T
q(z1.r [yrr) = q(21 | yrr) H q(2e | 2e-1, Yo, 1), (40)
t=2
where the residual is defined recursively as
e =Y — 2 —Cre1, T1=Y1— 21 (41)

Including r; in the conditioning set enables the variational posterior to adapt to the dependence
induced by the MA (1) structure and any non-Gaussianity in €;, while keeping the approximation
computationally tractable.

We report simulation-based evidence on this approach and other variational specifications
for a model with serially-correlated transitory shocks in Appendix A.1. We find that the
unrestricted Gaussian and the structured approach based on (40)-(41) recover the latent state
process quite well. However, as in the case with independent shocks, the variational approach

is not able to capture the kurtosis of transitory shocks.

6.2 Time-Invariant Heterogeneity

We next augment the nonlinear model to allow for a time-invariant latent type a. We postulate

the following model

Ys = 2t + €4, (42)
ze = p(ze—1,a) + o(2e-1, a)uy, (43)
(a721> Nfaa Uy NN(()ul)? et|a~¢7(-;a), (44>
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where u,; are serially independent, independent of e;, and independent of a. The type a can be
vector-valued, and follows a joint distribution f, together with the initial condition z;.
Let 6 = (a,p(-,-),0(-,-)), and let fy denote the joint density of a,z1,...,2r. The log-

likelihood function is
EG,’y(ylzT) = log J fe(% Zl:T) ¢7(y1:T — 21.T; a) dz.r da, (45)

where now the integral is taken with respect to (a,z1,...,27). Given a variational posterior

density gy (a, z1.7 | y1.7), the ELBO is given by

fe(a, Zl:T)@/)v(?Jl:T — 21T a)] '

46
%(Cl, 21.T | ylzT) ( )

59,7,¢(y1:T) = ]EQ¢(G,Z1:T|y1:T) llog

We report simulations for a nonlinear model with latent heterogeneity in Appendix A.2. In
the model, the variance of transitory shocks is heterogeneous across individuals, as in Almuzara
(2020). We find that the unrestricted Gaussian approach achieves a good approximation to
the mean and, to a lesser extent, to the volatility of the latent state process. However, the
variational approach is again not able to capture features of transitory shocks such as kurtosis,

and it does not accurately capture the individual heterogeneity in transitory variances.

7 Nonlinear Earnings Processes in the PSID

We now apply variational inference to real-world earnings data. Our objective is to compare
the earnings process estimated using variational inference to the one reported in Arellano et al.
(2017), who study earnings processes using a nonlinear latent variable model with a quantile-
based stochastic EM approach. Relative to this paper, we rely on a specification for annual
income (as opposed to biennial) with serially correlated transitory shocks and estimate the

model using variational inference either.

7.1 Estimated Earnings Process

We estimate the nonlinear model introduced in Section 2 using data from the Panel Study of
Income Dynamics (PSID) covering the period 1980-1990. The PSID is a long-running U.S.
household survey with detailed annual information on labor earnings, hours worked, employ-
ment status, and demographic characteristics. Following Blundell et al. (2008), we restrict the
sample to male household heads aged 25-60 with strong labor force attachment, excluding the

self-employed, individuals reporting fewer than 520 annual hours, and those with missing or
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Figure 4: Estimates on the PSID

Note: The figure plots the estimated conditional mean p(z;—1) and conditional volatility o(z¢—1)
of the latent earnings component z; using PSID data from 1980-1990. Solid lines correspond to
estimates obtained with an unrestricted Gaussian variational posterior. Dashed lines show estimates

based on alternative variational families described in Section 8.

implausible income reports. Labor income is constructed net of transfers and taxes using the
PSID family files.”

Our specification allows for nonlinear conditional mean f(z._;) and volatility o(z.—;) in
the latent process, as well as flexible initial condition z; and transitory shock e; distributions,
including a moving average specification for transitory shocks. Both pu(z;_1) and o(z_1) are
specified using quadratic polynomials as in (34)-(35). We incorporate an MA(1) component in
the transitory innovation to capture serial correlation in transitory shocks.

Our main estimates are based on an unrestricted Gaussian variational posterior family. The
results can be found in Figure 4 (in solid lines) and Table 4 (in the first row). Our estimates
reveal a highly persistent latent earnings process. The conditional mean pu(z;,_1) is close to
linear, with an autoregressive coefficient of 0.98. The conditional volatility o(z;_1) exhibits
a tilted U-shape: volatility is high at the lower end of the distribution, decreases toward the
middle, and rises again — though more modestly — at the upper end.

These estimates imply that persistence in z; is nonlinear. As in Arellano et al. (2017), we

measure persistence as the derivative of the conditional quantile function of z; given z;_; with

9We apply the procedure from the replication package in Blundell et al. (2008), where log household earnings

are residualized on a set of demographic variables in a first step.
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respect to z;_1. In words, persistence measures how the current earnings component z; changes
when the past component z;_; changes, for given values of the latter and the shock wu;. In our

conditionally Gaussian model the quantile function is
Qr(zt | 2e-1) = p(ze1) + 0(21)® (), forall 7€ (0,1),

where @ is the standard normal cdf. We then measure persistence as

p(2t-1,7) = Vo, Qr(2¢ | 21)

= v2t71/~L<Zt—1) + \th710-<Zt—1)cI)_l(T2' (47)
— ~
state-dependent mean state-dependent volatility

According to our estimates, the state-dependent mean component is close to a constant as
((z—1) is approximately linear. In contrast, the state-dependent volatility component is U-
shaped in z;_1, which implies that the persistence measure p(z;_1,7) depends both on the state
z;—1 and the shock 7 (i.e., the percentile rank of u;).

We report our estimate of the persistence surface in Panel (a) of Figure 5. The two horizontal
axes indicate the percentile rank of z;_; and the percentile rank 7 of w;, respectively, and
the vertical axis indicates the values of p(z,_1,7). We see that persistence is approximately
constant, and close to p = 1, for central values of z;_; and w;. However, high-u, shocks for
low-z;_1 households are associated with a lower persistence, as low as 0.5. We also observe that
low-u,; shocks for high-z;_; households are also associated with a lower p, although the decrease
is not as stark. Lastly, our estimates indicate some increase in p for high-u,/high-z,_;, and
especially low-u; /low-z;_; combinations. On the graph on the right of the figure, we reproduce
the persistence estimates from Arellano et al. (2017). While the two sets of estimates were
obtained from different specifications and estimation methods, and using different samples'?,
they tend to agree to a large extent.

In the last five columns of Table 4 we report our estimates of the other parameters of the
model, corresponding to the initial state z; and the transitory shocks e;. In particular, we find
that transitory shocks are positively correlated, with a moving average coefficient equal to 0.22.
Our estimates also indicate that transitory shocks have excess kurtosis relative to the normal,
although based on the simulation evidence in the previous sections it is likely that the kurtosis
of e; might be understated by our Gaussian variational estimator.

As a way to probe the robustness of the results, we also report estimates based on two

alternative approaches: one that uses a transformation of the Gaussian as a variational family,

10 Arellano et al., 2017 use biennial post-1999 PSID data.
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Table 4: Estimates on the PSID

Parameter Lo I 4o 0o o1 o9 o, kurt, o. kurt, ¢

Variational posterior

(1) unrestricted Gaussian 0.00 098 0.01 -1.88 -0.31 0.21 053 42 018 5.0 0.22
(2) transformed Gaussian 0.00 098 0.01 -1.81 -0.38 0.23 053 42 016 43 0.15
(3) IWAE unrestricted Gaussian 0.00 0.98 0.01 -1.83 -0.36 0.25 0.53 4.1 017 4.7 0.20

Note: The table reports parameter estimates for the nonlinear earnings model estimated on the
PSID from 1980-1990. The first row corresponds to the unrestricted Gaussian variational posterior,
while subsequent rows report estimates obtained using different approaches described in Section 8.
Reported parameters include those of the conditional mean p(z;—1), conditional volatility o(z:—1),

the initial state z1, and the transitory component e;, including its moving-average coefficient (.

and an approach based on using the variational density as a proposal for importance sampling.
We will provide details about these two approaches in Section 8. The estimates shown in Figure
4 (in dashed lines) and Table 4 (in the second and third rows) are similar to the ones based on
our baseline Gaussian variational approach. One difference is that the two alternative methods

imply slightly more curvature in the conditional volatility o(z;_1).

7.2 Certainty Equivalent and Risk Premium

To assess the economic relevance of the features of the earnings process that we have estimated,
we next report several summaries that quantify (under certain assumptions) the risk faced
by households. To proceed, let z; ~ fi(z]21) denote the distribution of future outcomes
conditional on the initial latent state z;, and let 5 € (0,1) denote the discount factor. Let
u(z) = U(e**) denote household utility. Here we interpret the persistent earnings component
2 as a proxy for log-consumption.!!

The household’s expected utility is given by

E Z Blu(z) | = Z Bt f w(z)fi(z ] z) dz. (48)

Rewriting this expression by exchanging the order of summation and integration yields:

E Zﬁtu(zt) = fu(z) Zﬁtft(z | z1) | dz. (49)

"Note that the utility function does not vary over time.
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(a) Estimates using Variational Inference (b) Estimates from Arellano et al. (2017)
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Figure 5: Estimates of Nonlinear Persistence of z; on the PSID

Note: The figure displays estimates of the state- and shock-dependent persistence measure p(z;—1,7)
defined in equation (47). Panel (a) shows the persistence surface estimated using variational inference,
while Panel (b) reproduces the corresponding estimates from Arellano et al. (2017). The horizontal

axes indicate the percentile ranks of z;_; and of the innovation u;, and the vertical axis reports the

implied persistence p(z¢—1,7).

We define the discounted mizture density as
- o0
flz2) = (1= 8) Y B filz] 20), (50)
t=0

which integrates to one and thus defines a valid probability distribution.

Given f(y |z ), and for any continuous, integrable utility function U(-), expected discounted

sums of utility can be computed in closed form as a single integral:

B | D)0tz | = 7o | w1 de = Bl 61)

For example, the certainty equivalent cF defined as the solution to
0 e¢]
D B8u(cF) = E | ) Bru(z) |, (52)
t=0 t=0

can be obtained as
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Figure 6: Discounted Mixture Density f in the PSID

~

Note: The figure plots the discounted mixture density f(z|z;1) defined in equation (50) for 8 = 0.9,
estimated from the PSID over 1980-1990. The horizontal axis measures the latent earnings compo-
nent z, and the vertical axis reports the corresponding discounted probability density conditional on

the initial state z;.

In turn, the risk premium — defined as the amount an agent would be willing to pay to avoid
uncertainty — can be obtained as follows:
CE

T=1-— .
E}?[ez]

(54)

The discounted density ]? estimated on the PSID data (Figure 6) inherits the asymmetric
features of the nonlinear model of Section 5. The conditional distribution of discounted log
earnings is skewed: households starting from the lower end of the income distribution face
right-skewed earnings innovations, whereas those starting from the upper end experience left-
skewed distributions. In addition, the peak of f is more pronounced at the top than at the
bottom of the distribution, reflecting the fact that the conditional volatility increases more
sharply at low income levels, while remaining comparatively muted at higher levels of the
distribution.

In Figure 7 we report certainty equivalents and risk premia estimated from the PSID for
f = 0.9 under quadratic, logarithmic, and CRRA utility (with parameter 2.0). The certainty
equivalent is increasing and convex in the initial latent state, reaching values at the top of the

distribution that are roughly five times higher than those at the bottom. In addition, we find
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Figure 7: Certainty Equivalent and Risk Premium in the PSID
Note: The figure displays certainty equivalents (left) and risk premia (right) computed from PSID

estimates of the nonlinear earnings model for 8 = 0.9, using three alternative utility specifications:

quadratic, logarithmic, and CRRA. Each panel reports values as a function of the initial latent state

~

z1, based on the estimated discounted mixture density f(z|z1).

that risk premia display substantial heterogeneity across the distribution. For example, under
log utility they range from about 2 percent in the middle of the distribution to 12 percent at
the lower end. With more curvature in preferences, as under CRRA utility, risk premia become

even larger, exceeding 20 percent for households starting at the lower tail of the distribution.

8 Two Alternatives to Gaussian Variational Inference

Our results based on simulated data indicate that, while Gaussian variational approximations
tend to recover the conditional mean and variance quite well, the method fails at capturing the
kurtosis of transitory shocks. A number of strategies have been proposed in the literature to

improve the accuracy of the approximation. Here we briefly review two of these strategies.

8.1 Normalizing Flows

Originally proposed by Rezende and Mohamed (2015), a normalizing flow is an invertible trans-
formation h that maps a simple base distribution (e.g. a standard Gaussian) into a complex
distribution. By incorporating flows into variational inference, we can start with a Gaussian
go(z) as base density, and define a sequence of transformations zx = hg o --- 0 hi(z). The

resulting density qx (zx) is computed using the change-of-variables formula. By choosing trans-
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formations hy with tractable Jacobians and expressive functional forms, the variational family
can capture complex density shapes, including skewness, heavy tails, and multimodality. One
practical advantage is that flows maintain computational tractability (the transformations are
chosen so that Jacobian determinants are easy to compute), so the ELBO with a flow-based
gk (zr) can still be optimized efficiently.

To capture non-Gaussian features of the posterior distribution such as skewness and excess
kurtosis, we consider a one-dimensional transformation of a standard normal variable based on
the sinh—arcsinh family introduced in Section 5. This family allows us to preserve the tractabil-
ity and reparameterization benefits of the Gaussian while introducing controlled deviations from
normality. Let Z ~ N(0,1) be a standard normal random variable. We define the transformed
latent variable z as

(55)

.
Z:Tﬂazwa.smh(mn;@“),

where 1 € R and ¢ > 0 control the location and scale, 9 > 0 governs the kurtosis, ¢ € R
introduces skewness, and A = (u, 0,¢,6). When § = 1 and € = 0, the transformation reduces to
the identity and z ~ A/ (u1, 02). The reparameterization trick applies directly, as z is obtained by
a differentiable transformation of a base normal variable. Gradients of the ELBO with respect
to A can then be estimated via differentiation. All terms are available in closed form, and the
gradients are computed efficiently.

In Figure 3 we have seen that the transformed Gaussian specification captures the non-
Gaussian shape of the posterior density well. At the same time, the sinh—arcsinh family has
a specific, potentially restrictive functional form. The transformation is applied element-wise
and does not model correlations across latent dimensions. Parsimonious transformations of the
Gaussian appear promising to improve the estimation of earnings dynamics models given the

presence of nonlinearity and non-Gaussian features in earnings data.

8.2 Importance-Weighted Variational Inference

Another approach is to use the fitted Gaussian variational posterior as a proposal density
for importance sampling. This strategy is referred to as Importance-Weighted Autoencoders
(IWAE) (Wu et al., 2016, Cremer et al., 2017, Kim and Mnih, 2020). It exploits multiple draws
from the variational posterior to tighten the ELBO, thereby reducing the gap with the true
log-likelihood.

Formally, let gs(z1.7|y1.7) denote a variational posterior family with parameter ¢, and

suppose we draw K independent values {z*)}X  ~ ¢,(2|y). The importance-weighted ELBO
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is defined as

(K) ol Z1 T )y (Y1 — ng%)
59’%¢<y1:T) =E.0),_209~gy(err [12.7) | 108 Z k )

a6(205 | yir)

where K > 1 controls the tightness of the bound. For K = 1, this recovers the standard ELBO;
larger K values yield tighter bounds that approach the true log-likelihood from below. Indeed,

it follows from Jensen’s inequality that

1 K K+1
Eo0(Yrr) = 59(,f3,¢(y1:T) <. < 59(,7?¢(y1:T) < 59(,7:; )<y1:T> < o < Loy(yrr).
—_—— —_——
ELBO log-likelihood

Diagnostics.  The normalized importance weights also allow the researcher to compute two
diagnostics at essentially no additional cost. The effective sample size (ESS) measures how
many independent draws from the true posterior are effectively represented by the draws used

in importance sampling. Formally, given the normalized importance weights

By = i, with  wy = ol )@/J(Vk(ym — le)’
Zj:l i (21 | y17)
where z(®) are independent draws from the variational posterior ¢4, the ESS is defined as

1
Zk 1wk:

This quantity lies between zero and one. An ESS close to one indicates that the variational pos-

ESS =

terior aligns well with the true posterior, since all samples contribute evenly to the importance-
weighted estimate. Conversely, an ESS close to zero indicates severe degeneracy, with nearly
all weights concentrated on a single period, implying that the approximation ¢ fails to cover
the posterior adequately.

Another useful diagnostic for assessing the quality of the variational approximation is the

ELBO gap between the evidence lower bound and the log-likelihood,

g9,%¢<yl:T> = Le,w(ylzT) - 50,%¢>(y1:T)-

Computing the ELBO gap Gy, 4(y1.r) exactly is often infeasible, since it requires evaluating
the log-likelihood Ly (y1.7). However, unbiased Monte Carlo estimators of Ly, (y1.r) can be
constructed using importance sampling, using the same draws as in the IWAE approach. These
estimators are considerably more expensive to compute than the standard ELBO. As a result,
the ELBO gap is rarely used as an objective for optimization. Instead, it is most useful as an

ex-post diagnostic.
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9 Conclusion

While a growing body of evidence highlights the relevance of nonlinear features in earnings
dynamics, nonlinear state-space models remain challenging to estimate. In this paper we explore
whether variational inference can provide a reliable alternative to existing methods. We propose
a flexible framework that nests the canonical linear Gaussian process while accommodating
nonlinear persistence, state-dependent volatility, serially correlated or heavy-tailed transitory
shocks, and latent time-invariant heterogeneity. We rely on variational approximations to the
posterior distribution of latent states, based on Gaussian specifications, to estimate various
versions of the model.

Our simulation results show that Gaussian variational inference recovers the main features
of the earnings process quite well, with some important exceptions. The conditional mean
and volatility of the persistent component are well estimated across a range of specifications,
although some biases are apparent in the various nonlinear models we estimate. Importantly,
higher-order moments of transitory shocks such as excess kurtosis remain difficult to capture.
Among posterior families, mean-field approximations perform poorly. Applying the method to
PSID data, we find a nearly linear conditional mean (with average persistence close to unity),
a tilted U-shaped conditional variance across the income distribution, and evidence of serial
correlation in transitory shocks. As in Arellano et al. (2017), persistence is lower for high-
earnings households experiencing negative shocks and low-earnings households experiencing
positive shocks.

Taken together, these findings motivate further study of variational inference as a tractable
alternative to traditional likelihood-based methods to estimate realistic models of earnings
dynamics. The approach scales well to long panels, is compatible with modern optimization
frameworks, and retains flexibility to model key nonlinearities that matter empirically. At the
same time, our analysis highlights ongoing challenges, particularly in capturing the shape of
the transitory shock distribution.

Future research could extend this agenda in several directions. An important limitation is
the lack of theoretical guarantees. Although variational inference has been theoretically justified
in some settings, the biases we uncover using simulated data suggest that a Gaussian family
does not lead to consistent estimators in the nonlinear models we study. This motivates further
work on extensions of the Gaussian approach, such as based on normalizing flows, to study
their performance both in practice and in theory.

A key advantage of variational inference is its computational tractability. It provides a
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unified, gradient-based estimation framework that can be implemented in modern automatic
differentiation environments. It scales efficiently in both the cross-sectional and temporal di-
mensions of the data, and it remains stable even when the number of latent variables is large.
These features make it feasible to estimate flexible nonlinear models not only in survey data
such as the PSID but also in large-scale administrative datasets with richer earnings histories.
It is our hope that this approach can help uncover new empirical patterns of dynamics and

heterogeneity in earnings data.
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A Extensions: Simulation Evidence

A.1 Serially Correlated Transitory Shocks

We consider the model with moving average transitory shocks described in Subsection 6.1. As
in the nonlinear model with independent transitory shocks, we consider various forms for the
variational posterior density: a Gaussian specification with an unrestricted covariance matrix,
a Gaussian with a hidden Markov specification, and a Gaussian with a diagonal covariance
matrix (mean-field). In addition, we explore additional structured variational posteriors that
incorporate the MA structure, see (40)-(41).

The unrestricted Gaussian posterior provides the most flexible benchmark, as it can capture
the full dependence structure implied by the MA(1) shocks. By contrast, the hidden Markov ap-
proximation encodes Markovian dependence that is valid under independent transitory shocks.
With MA(1) shocks, however, the true posterior does not satisfy this structure. The mean-
field Gaussian posterior is even more restrictive, as it rules out all temporal dependence by
construction.

We conduct experiments using data simulated from the MA(1) specification described in
Subsection 6.1. The moving average coefficient is set to ( = 0.2, while the remaining elements
of the model follow the nonlinear specification used in Section 5, including the distributions of
the innovations and the functional forms of 1(z,_1) and o(z_1).

The results, summarized in Figure 8 and Table 5, indicate that, as in the nonlinear model
with serially independent transitory shocks, the unrestricted Gaussian variational estimator
recovers the mean p(z,—1) and the volatility o(z;,_1) quite well (see the first row of Table 5).
The hockey-stick shape of p(z;_1) is well captured, and the estimated o(z;_1) function captures
some (though not all) of the true nonlinear volatility pattern. The structured variational
approach based on (40)-(41), which embeds the dynamic structure of the model to restrict
the form of the variational posterior densities, performs similarly (second row). In contrast,
both the structured approach based on (misspecified) Markovian variational densities (third
row) and the approach based on a Gaussian variational posterior with a diagonal covariance
matrix (last row) perform less well. At the same time, none of the variational methods is able
to correctly capture the high kurtosis of transitory innovations. Lastly, the unrestricted and
(correctly-specified) structured variational approaches estimate a moving average coefficient

that is not far from the truth, albeit too low.
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Figure 8: Simulation Results in the Model with MA(1) Transitory Shocks

Note: The figure plots the conditional mean and volatility functions implied by the simulated non-

linear DGP, together with their estimated counterparts obtained under two variational posterior

specifications, in the model with MA(1) transitory shocks. Each panel shows the true conditional

mean or volatility (solid lines) and their estimated counterparts (dashed lines) across the support of

Zt—1-
Table 5: Simulation Results in the Model with MA(1) Transitory Shocks

Parameter Q a 1o 4 Lo 0o o1 09 0, kurt,, o, kurt, ¢
DGP -0.25 0.10 0.00 0.90 0.00 -1.35 0.00 035 040 33 016 9.2 0.20
Variational posterior

(1) unrestricted Gaussian ~ -0.31 0.24 -0.06 1.02 -0.08 -1.25 0.02 0.29 041 33 012 3.1 0.09
(2) hidden Markov, MA -0.28 0.17 -0.02 095 -0.05 -1.26 0.04 027 042 33 013 3.0 0.16
(3) hidden Markov, no MA -0.34 0.34 -0.13 1.11 -0.13 -1.19 0.07 022 043 33 010 3.0 -
(4) diagonal -0.32 0.14 0.01 0.78 0.07 -1.15 0.16 0.04 043 33 0.09 3.0 -0.07

Note: The table reports the

parameter values used in the simulated nonlinear DGP and the corre-

sponding estimates obtained under four variational posterior specifications. The estimation model

allows for nonlinear conditional mean and state-dependent volatility functions, as well as an MA(1)

transitory shock, and it is applied to data generated with sinh—arcsinh innovations for z; and ¢;.
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Table 6: Simulations for a Nonlinear Model with Heterogeneous Transitory Variances

Parameter a7 o I 11 1o 09 o1 09 0, kurt,, o, kurt. Co c1 Co

DGP -0.25 0.10 0.00 090 0.00 -1.35 0.00 035 040 33 016 92 -1.20 0.30 0.30
(1) unrestricted Gaussian -0.34 0.19 -0.01 0.89 -0.01 -1.28 0.11 0.25 041 34 0.18 32 -191 0.10 0.03

Note: The table reports the parameter values used in the simulated nonlinear DGP and the corre-
sponding estimates obtained under an unrestricted Gaussian variational posterior specification. The
estimation model allows for nonlinear conditional mean and state-dependent volatility functions, as
well as individual-specific transitory variances, and it is applied to data generated with sinh—arcsinh

innovations for z; and vy.

A.2 Model with Heterogeneous Transitory Variances

We next consider a nonlinear model with heterogeneity in the variance of transitory shocks,

which is a special case of the model introduced in Subsection 6.2:

Yy = 2t T €y, (56)
2 = p(z-1) + o (ze-1)ue, (57)
21~ fo, alz ~N(0,1), u~N(0,1), e =s(a,z1)ve, vi]a,z1 ~ 1, (58)

where v, is distributed according to the sinh-arcsinh family with the scale parameter normalized
to one (since the variance of v; and the magnitude of s are not separately identified). We specify

the log-variance as
log s(a, z1) = ¢y + 121 + caa.

In Table 6 and Figure 9 we report the estimates based on a simulated sample with N =
30,0000 and T" = 10. We see that the mean and, to a lesser extent, the volatility of z; given z;_1,
are relatively well reproduced. However, Table 6 shows that the features of the distribution of
transitory shocks are not well captured. In addition to yielding a low kurtosis, the estimates
do not reproduce the patterns of variance heterogeneity present in the model. Regarding
computational cost, the nonlinear model with heterogeneous transitory variances is estimated

in 4 minutes and 23 seconds.

B Computational Appendix

This appendix describes the implementation of our variational inference estimator, focusing
on three components: the Gaussian variational posterior, the quadratic conditionally-Gaussian

model, and the sinh—arcsinh error density.
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Figure 9: Simulation Results in the Model with Heterogeneous Transitory Variances

Note: The figure plots the conditional mean and volatility functions implied by the simulated non-
linear DGP, together with their estimated counterparts obtained under an unrestricted Gaussian
variational posterior specification, in the model with individual-specific transitory variances. Each
panel shows the true conditional mean or volatility (solid lines) and their estimated counterparts

(dashed lines) across the support of z;_1.

Gaussian Variational Posterior. The variational posterior is a multivariate Gaussian

with neural network parameterization. For observation y € R%:

q(z |y) = N(u(y), L(y)L(y)"), (59)

where p(y) € R% is the mean and L(y) € R%*% is a lower-triangular Cholesky factor with

positive diagonal elements (via softplus). We use the reparameterization trick:

z=uy) + L(y) - u, (60)

where u ~ N(0, I).

class JointNormalPosterior (nn.Module):

def __init__(self, dim, dim_latent=None, regularize=1e-3,
hidden_dim=32, diagonal=False, sd_clamp=3.0):
super () . __init__()
self.dim = dim
self.dim_latent = dim_latent if dim_latent else dim
self.regularize = regularize

self.diagonal = diagonal
self.sd_clamp = sd_clamp

# Neural network layers

self.fc = nn.Linear (dim, hidden_dim)
self .mu = nn.Linear(hidden_dim, self.dim_latent)
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self.diag_head = nn.Linear (hidden_dim, self.dim_latent)
if not diagonal:
n_off = self.dim_latent * (self.dim_latent - 1) // 2
self.off_head = nn.Linear (hidden_dim, n_off)

def forward(self, y):
h = F.relu(self.fc(y))
mu = self.mu(h)
mul[..., :self.dim] += y # Center first latent around observation
L_diag = F.softplus(self.diag_head(h)) + self.regularize

if not self.diagonal:
off_raw = self.off_head(h).clamp(-5.0, 5.0)
idx_i, idx_j = torch.tril_indices(self.dim_latent,

self.dim_latent, offset=-1)
L = torch.zeros(y.size(0), self.dim_latent, self.dim_latent)
L[:, idx_i, idx_j] = off_raw
L[:, range(self.dim_latent), range(self.dim_latent)] = \
L_diag.clamp(max=self.sd_clamp)

else:
L = torch.diag_embed(L_diag.clamp(max=self.sd_clamp))

return mu, L

def draw_and_logprob(self, y, u, logpr_draw=False):
mu, L = self.forward(y)
z = mu + torch.matmul(L, u.unsqueeze(-1)).squeeze (-1)
q = MultivariateNormal (mu, scale_tril=L)
log_qz = q.log_prob(z) if logpr_draw else -q.entropy()
return z, log_qz

Conditionally-Gaussian Model for z, ..., z7. The model p(z, ..., zr) follows a Markov

structure:

p(z1; ... 2r) = p(z1) Hp(Zt | 2e-1).

t=2

Each transition is Gaussian:

Pz | 1) = N(M9<Zt—1)a Gg(zt_l)),

with polynomial mean and log-standard deviation.

(61)

(62)

class MarkovNormalConditionalPolyPrior (nn.Module):
"""Markov prior with polynomial conditional distributions."""

def __init__(self, nt, poly_degree=1, regularize=1e-3):
super () . __init__()
self .nt = nt

self .regularize = regularize

# Polynomial functions for conditional mean and log-variance
self .net_mu = Polynomial (poly_degree)

self .net_sigma = Polynomial (poly_degree)

# Initial distribution parameters

self .mu_z1 = nn.Parameter (torch.zeros (1))

self.log_sigma_zl = nn.Parameter (torch.zeros (1))

def log_prob_zl(self, z1):
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initial distribution."""

torch.exp(self.log_sigma_z1)).log_prob(zl)

"""Log-probability of
return Normal (self.mu_z1,
def log_prob(self, z):

"""Compute log p(z) = log p(z_1) + sum_t log p(z_t | z_{t-1})."""

logp = self.log_prob_zi(z[:, 0])
for t in range(l, self.nt):
z_cur, z_lag = z[:, t:t+1], z[:, t-1:t]
mu = self.net_mu(z_lag)
sigma = torch.exp(self.net_sigma(z_lag)) + self.regularize
logp += Normal (mu, sigma).log_prob(z_cur).squeeze (1)

return logp

Sinh—Arcsinh Error Density.  The error density uses a sinh—arcsinh distribution to model

heavy tails. For Z ~ A(0, 1):
z=p+0-sinh(0~" - (arcsinh(Z) + ¢)), (63)

where o > 0 is a scale parameter, € controls skewness, and § > 0 governs tail thickness (§ > 1

implies heavier tails). The inverse is

Z = sinh(6 - arcsinh((z — p) /o) — €), (64)
with log-Jacobian:
&
log d—z = —logo +logd — logcosh (0" - (arcsinh(Z) + €)) + 5 log(1 + 22). (65)
2

class SinhArcsinh(Distribution):

"""Sinh-arcsinh distribution for heavy tails."""

def __init__(self, loc, scale, skew, tailweight):
super (). __init__()
self.loc = loc
self.scale = scale
self.skew = skew
self.tailweight = tailweight
self._base = Normal (0, 1)
def _inverse(self, y):
"""Inverse transformation: y -> standard normal z."""
w = (y - self.loc) / self.scale
return torch.sinh(torch.asinh(w) / self.tailweight - self.skew)
def log_prob(self, value):

"""Log-probability with Jacobian correction."""

z = self._inverse(value)

h (torch.asinh(z) + self.skew) * self.tailweight

log_jacobian -torch.log(self.scale) - torch.log(self.tailweight) \
- torch.log(torch.cosh(h)) + 0.5 * torch.loglp(z**2)

return self._base.log_prob(z) + log_jacobian

class SinhEmission(nn.Module):

"""Decoder with sinh-arcsinh emission distribution.

def __init__(self, sigma_eps=0.1, fix_sigma=False):
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super (). __init__Q)

self.log_sigma = nn.Parameter (torch.log(sigma_eps * torch.ones (1)),
requires_grad=not fix_sigma)
self.log_beta = nn.Parameter (torch.zeros (1)) # Tail parameter

def log_likelihood(self, y, z):
"""Compute log p(y | z) using sinh-arcsinh distribution."""
dist = SinhArcsinh(loc=torch.zeros (1), scale=torch.exp(self.log_sigma),
skew=torch.zeros (1), tailweight=torch.exp(self.log_beta))

return dist.log_prob(y - z).sum(dim=1)

ELBO Objective and Optimization. The complete variational objective maximized via

gradient ascent is:

5<87 ¢) = I[‘?‘E’qd,(z|y) [lng.9<y ‘ Z) + lng@(Z) - 10g Q¢<Z ’ y)]

We estimate the expectation via Monte Carlo sampling using the reparameterization trick. For

observations {y®}~, and S draws per observation:

N , S
£, Z Z log pe(y (i) ] zgi)) + log pe(z ()) — log ¢ (2, 2 \y )]

where 2 ~ g4(- | yV) via the reparameterization trick.

class VAE(nn.Module):
"""Complete VAE model combining encoder, prior, and decoder.
def __init__(self, dim, nt, poly_degree=1, sigma_eps=0.1):

nnn

super () .__init__Q)
self.encoder = JointNormalPosterior (dim=dim, dim_latent=nt,
hidden_dim=32, regularize=1e-3)
self .prior = MarkovNormalConditionalPolyPrior (nt=nt,
poly_degree=poly_degree)
self .decoder = SinhEmission(sigma_eps=sigma_eps)

def elbo(self, y, n_samples=1):
"""Compute ELBO estimate with n_samples Monte Carlo samples."""
batch_size = y.size (0)

elbo_sum = 0.0
for in range(n_samples):
Sample standard normal for reparameterization

u = torch.randn(batch_size, self.encoder.dim_latent)

Encode: sample z ~ q(zly) and compute log q(zly)
z, log_qz = self.encoder.draw_and_logprob(y, u, logpr_draw=True)

# Decoder: compute log p(ylz)
log_py_z = self.decoder.log_likelihood(y, z)

# Prior: compute log p(z)
log_pz = self.prior.log_prob(z)

# ELBO = E[log p(ylz) + log p(z) - log q(zly)]
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elbo_sum += (log_py_z + log_pz - log_qz).mean()
return elbo_sum / n_samples

def forward(self, y):
"""Forward pass returns negative ELBO (loss to minimize)."""

return -self.elbo(y, n_samples=1)

# Training loop
def train_vae(model, dataloader, num_epochs=100, lr=1e-3):
optimizer = torch.optim.Adam(model.parameters (), 1lr=1r)

for epoch in range(num_epochs):
epoch_loss = 0.0
for batch_idx, y_batch in enumerate(dataloader):
optimizer.zero_grad ()

# Compute negative ELBO (loss)
loss = model(y_batch)
loss.backward ()
optimizer.step ()

epoch_loss += loss.item()

avg_loss = epoch_loss / len(dataloader)
print (f"Epoch {epoch+1}/{num_epochs}, Loss: {avg_loss:.4f}")

return model

# Example usage
model = VAE(dim=10, nt=5, poly_degree=2, sigma_eps=0.1)
trained_model = train_vae(model, train_dataloader, num_epochs=100, lr=1e-3)

# Evaluation: compute ELBO with more samples for better estimate
with torch.no_grad():

test_elbo = model.elbo(test_data, n_samples=100)

print (f"Test ELBO: {test_elbo:.4f}")
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