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Abstract

We study discrete panel data methods where unobserved heterogeneity is

revealed in a first step, in environments where population heterogeneity is

not discrete. We focus on two-step grouped fixed-effects (GFE) estimators,

where individuals are first classified into groups using kmeans clustering,

and the model is then estimated allowing for group-specific heterogeneity.

Our framework relies on two key properties: heterogeneity is a function

— possibly nonlinear and time-varying — of a low-dimensional continuous

latent type, and informative moments are available for classification. We

illustrate the method in a model of wages and labor market participation,

and in a probit model with time-varying heterogeneity. We derive asymp-

totic expansions of two-step GFE estimators as the number of groups grows

with the two dimensions of the panel. We propose a data-driven rule for

the number of groups, and discuss bias reduction and inference.
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1 Introduction

In both reduced-form and structural work in economics, it is common to model

unobserved heterogeneity as a small number of discrete types. Various estima-

tion strategies are available, including discrete-type random-effects (as in Keane

and Wolpin, 1997, and many other applications) and grouped fixed-effects (as re-

cently studied by Hahn and Moon, 2010, and Bonhomme and Manresa, 2015).

These methods require the researcher to jointly estimate individual heterogene-

ity and model parameters.1 In addition, little is known about their properties

when individual heterogeneity is not discrete in the population.2 In this paper,

we study two-step discrete estimators for panel data, and provide conditions for

their validity when heterogeneity is continuous.

We focus on two-step grouped fixed-effects (GFE) estimators. In a first step,

we classify individuals based on a set of individual-specific moments, using the

kmeans clustering algorithm. The aim of the kmeans classification is to group

together individuals whose latent types are most similar.3 In a second step, we

estimate the model by allowing for group-specific heterogeneity. This second step

is similar to fixed-effects (FE) estimation, albeit it involves a smaller number of

parameters that are group-specific instead of individual-specific. We analyze the

properties of these two-step estimators in panel data models where heterogeneity is

continuous. Hence, in contrast with existing theoretical justifications for discrete-

type methods, here we use discrete heterogeneity as a dimension reduction device

rather than as a substantive assumption about population unobservables.

Our approach is targeted to environments with two key properties. First,

unobserved heterogeneity is a function of a low-dimensional latent variable. We

do not restrict this latent type to be discrete. In many economic models, agents’

heterogeneity in preferences or technology is driven by a low-dimensional type,

which enters the model nonlinearly and may affect multiple outcomes. As an

1Also related, nonparametric maximum likelihood methods (e.g., Heckman and Singer, 1984)
rely on joint estimation of the distribution of heterogeneity and the parameters.

2In a network context, Gao et al. (2015) provide results for stochastic blockmodels under
continuous heterogeneity.

3Buchinsky et al. (2005) also propose to group individuals in a first step using kmeans.
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example, we study a model of participation in the labor market where the worker’s

utility is a function of her productivity type, which in turn determines her wage.

GFE provides a tool to exploit such nonlinear factor structures.

Second, the first-step moments satisfy an injectivity condition, which requires

any two individuals with the same population moments to have the same type.

The choice of moments is important to ensure good performance. In examples, we

show how suitable moments arise naturally. In models with exogenous covariates,

we propose and analyze the use of conditional moments to recover latent types.

Our setup also covers models where heterogeneity varies over time. Unlike

additive FE methods and interactive FE methods based on linear factor structures

(Bai, 2009), GFE does not require heterogeneity to take an additive or interactive

form. As an illustration, we compare GFE and FE estimators in a probit model

where heterogeneity is a nonlinear function of a time-invariant factor loading and

a time-specific factor.

Our main results are large-N, T asymptotic expansions of two-step GFE esti-

mators under time-invariant and time-varying continuous heterogeneity. In both

settings, GFE is consistent as the number of groups grows with the sample size,

under conditions that we provide. We find that, when the population heterogene-

ity is not discrete, estimating group membership induces an incidental parameter

bias, similarly to FE methods. Moreover, since discreteness is an approximation

in our setting, GFE is affected by approximation error. We propose a simple data-

driven rule for the number of groups that controls the approximation error, and

discuss how to reduce incidental parameter bias for inference.

The outline of the paper is as follows. We introduce the setup and two-step

GFE estimators in Section 2, study their asymptotic properties in Section 3, and

outline several extensions in Section 4. The main proofs may be found in the

appendix, and the supplemental material contains additional results.

2 Two-step grouped fixed-effects (GFE)

We consider a panel data setup, where we denote outcome variables and exogenous

covariates as Yi=(Y ′i1, ..., Y
′
iT )′ and Xi= (X ′i1, ..., X

′
iT )′, respectively, for i=1, ..., N .
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In our theory we cover two models. In the first one, unobserved heterogeneity is

time-invariant. In this case, the conditional log-density of Yi given Xi is given by:4

ln fi(αi0, θ0) =
T∑
t=1

ln f(Yit |Yi,t−1, Xit, αi0, θ0), (1)

and the log-density of exogenous covariates Xi takes the form:

ln gi(µi0) =
T∑
t=1

ln g(Xit |Xi,t−1, µi0),

where θ0 is a vector of common parameters, and αi0 and µi0 are individual-specific

parameters. We leave the form of g unrestricted, and in estimation we will use

a conditional likelihood approach based on fi alone. In other words, in applica-

tions the researcher only needs to specify the parametric form of fi(αi0, θ0) in (1).

However, the heterogeneity µi0 in covariates plays an important role in our theory.

In the second model, unobserved heterogeneity varies over time. Such variation

in unobservables over calendar time (e.g., business cycle), age (e.g., life cycle),

counties, or markets, is of interest in many applications. In the time-varying case,

log-densities take the form:

ln fi(αi0, θ0) =
T∑
t=1

ln f(Yit |Yi,t−1, Xit, αit0, θ0),

ln gi(µi0) =
T∑
t=1

ln g(Xit |Xi,t−1, µit0),

where αi0 = (α′i10, ..., α
′
iT0)′ and µi0 = (µ′i10, ..., µ

′
iT0)′. In both models we are

interested in estimating θ0, as well as average effects depending on α10, ..., αN0.

2.1 Main assumptions

GFE relies on two key assumptions that we now present. We defer the presen-

tation of regularity conditions until Section 3. First, we assume that unobserved

heterogeneity is a function of a low-dimensional vector ξi0.

4In models with first-order dependence, we assume that Yi0 is observed and we condition
on it. Higher-order dependence can be accommodated similarly. In dynamic settings, Yit may
contain sequentially exogenous covariates in addition to outcome variables.
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Assumption 1. (heterogeneity)

(a) Time-invariant heterogeneity: There exist ξi0 of fixed dimension d, and two

Lipschitz-continuous functions α and µ, such that αi0 = α(ξi0) and µi0 = µ(ξi0).

(b) Time-varying heterogeneity: There exist ξi0 of fixed dimension d, λt0 of di-

mension dλ, and two functions α and µ that are Lipschitz-continuous in their first

argument, such that αit0 = α(ξi0, λt0) and µit0 = µ(ξi0, λt0).

We will refer to ξi0 as an individual type, and to d as the dimension of het-

erogeneity. The researcher does not need to know d, α, or µ in applications. In

models with time-varying unobserved heterogeneity, Assumption 1 requires unob-

servables to follow a factor structure. The link between αit0, ξi0 and λt0 may be

nonlinear, the linear structure αit0 = ξ′i0λt0 (Bai, 2009) being covered as a special

case. Moreover, the dimension of λt0 is unrestricted. Our theory will show that

the performance of two-step GFE crucially relies on ξi0 being low-dimensional, a

leading case being d = 1. We provide examples in the next subsection.

Second, we rely on individual-specific moment vectors hi that are informative

about the types ξi0. We state this formally as our second main assumption, where

‖ · ‖ denotes an Euclidean norm.

Assumption 2. (injective moments)

There exist vectors hi of fixed dimension, and a Lipschitz-continuous function ϕ,

such that plimT→∞ hi = ϕ(ξi0), and 1
N

∑N
i=1 ‖hi − ϕ(ξi0)‖2 = Op (1/T ) as N, T

tend to infinity. Moreover, there exists a Lipschitz-continuous function ψ such

that ξi0 = ψ(ϕ(ξi0)).

Assumption 2 requires the individual moment vector hi to be informative about

ξi0, in the sense that, for large T , ξi0 can be uniquely recovered from hi. Neither

ϕ nor ψ (which may depend on θ0) need to be known to the econometrician. In-

tuitively, injectivity guarantees that one can separate the types of two individuals

ξi0 and ξi′0 by comparing their moments hi and hi′ . For example, an average

hi = 1
T

∑T
t=1 h(Yit, Xit) will, under Assumption 1 and suitable regularity condi-

tions, converge as T tends to infinity to a function ϕ(ξi0) of the type ξi0. We

require ϕ to be injective.
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The convergence rate in Assumption 2 requires appropriate conditions on the

serial dependence of Yit and Xit. In models with time-varying heterogeneity, ϕ

will also depend on the λt0 process. In such models, Assumption 2 requires the

moments to be informative about ξi0, and not λt0. Injectivity is a key requirement

for consistency of two-step GFE estimators. More generally, the choice of moments

hi is important for finite-sample performance.

2.2 Examples

To illustrate the framework we now describe two examples, for which we will

provide illustrative simulations in Subsection 2.4. First, consider a dynamic model

of wages W ∗
it and labor force participation Yit:

Yit = 1 {u(αi0) ≥ c(Yi,t−1; θ0) + Uit} ,

W ∗
it = αi0 + Vit,

Wit = YitW
∗
it,

(2)

where the wage W ∗
it is only observed when i works, Uit are i.i.d. standard normal,

independent of the past Yit’s and αi0, and Vit are i.i.d. independent of all Uit’s,

Yi0, and αi0. Here the same scalar expected payoff αi0 = ξi0, unobserved to

the econometrician, drives the wage and the decision to work. Individuals have

common preferences denoted by the utility function u, the cost function c is state-

dependent, and both u and c are unknown to the econometrician.

In this setting, GFE provides a natural approach to exploit the functional link

between αi0 and u(αi0), and to learn about the type αi0 using both wages and

participation. For instance, when hi = (W i, Y i)
′, where Zi = 1

T

∑T
t=1 Zit denotes

the individual mean of Zit, injectivity is satisfied under mild conditions, provided

W i = αi0Y i + op(1) and plimT→∞ Y i > 0.

Fixed-effects (FE) is a possible approach to estimate θ0 in (2). However, a con-

ventional FE estimator would treat αi0 and ui0 = u(αi0) as unrelated parameters,

so the FE estimate of θ0 would be solely based on the binary participation deci-

sions. Another strategy would be to rely on discrete-type random-effects methods,

which are typically based on joint estimation. In contrast, we implement GFE in
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two steps with no need for iterative estimation, and we justify the estimator in

environments where heterogeneity is not restricted to be discrete.

As a second example, consider the following probit model with time-varying

heterogeneity:  Yit = 1 {X ′itθ0 + αit0 + Uit ≥ 0} ,

Xit = µit0 + Vit,
(3)

where Uit are i.i.d. standard normal, independent of all Vit’s, αit0’s, and µit0’s, and

Vit are i.i.d. independent of all αit0’s and µit0’s. Under Assumption 1, αit0 and

µit0 depend on a low-dimensional vector ξi0 of factor loadings, so αit0 = α(ξi0, λt0)

and µit0 = µ(ξi0, λt0). Here d is the dimension of the type ξi0 governing both αit0

and µit0.

To motivate why, in static models with covariates such as (3), αit0 and µit0

may depend on a common low-dimensional type ξi0, suppose that, in every period,

agent i chooses Xit based on expected utility or profit maximization. She observes

ξi0 and λt0 — which enter outcomes through αit0 — and takes her decision before

the i.i.d. shock Uit is realized. In such a case, Xit will be a function of ξi0 and λt0,

as well as idiosyncratic factors Vit in the agent’s information set. Here we assume

that the agent’s information set, and primitives such as preferences or costs, do

not include other i-specific elements beyond ξi0.5

When α(·, ·) is additive or multiplicative in its arguments, model (3) can be

estimated using two-way FE (Fernández-Val and Weidner, 2016) or interactive

FE (Bai, 2009, Chen et al., 2020), respectively. However, when α(·, ·) is unknown,

these fixed-effects estimators are inconsistent in general. In contrast, GFE will

remain consistent when unobservables are unknown nonlinear functions of factor

loadings ξi0 and factors λt0, and injectivity holds. Taking hi = (Y i, X
′
i)
′ as mo-

ments in model (3), injectivity is satisfied when types have monotone effects on

the heterogeneity components.6 More generally, in Assumption 2 we require that

5This example is reminiscent of Mundlak’s (1961) classic analysis of farm production func-
tions, where soil quality ξi0 is observed to the farmer but latent to the analyst.

6To see this, consider the case where αit0 is the only component of heterogeneity (i.e., µit0 = 0
in (3)), and take hi = Y i. Letting G denote the cdf of −(V ′itθ0 + Uit), injectivity will hold
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the latent type ξi0 can be asymptotically recovered from a moment vector whose

dimension is not growing with the sample size.

2.3 Estimator

Two-step GFE consists of a classification step and an estimation step.

First step: classification. We rely on the individual-specific moments hi to

learn about the individual types ξi0. Specifically, we partition individuals into K

groups, corresponding to group indicators k̂i ∈ {1, ..., K} , by computing:

(
ĥ(1), ..., ĥ(K), k̂1, ..., k̂N

)
= argmin

(h̃(1),...,h̃(K),k1,...,kN)

N∑
i=1

∥∥∥hi − h̃(ki)
∥∥∥2

, (4)

where {ki} are partitions of {1, ..., N} into K groups, and h̃(k) is a vector. Note

that ĥ(k) is simply the mean of hi in group k̂i = k.

In the kmeans optimization problem (4), the minimum is taken with respect

to all possible partitions {ki}. Fast and stable optimization methods such as

Lloyd’s algorithm are available, although computing a global minimum may be

challenging; see Bonhomme and Manresa (2015) for references. Following the

literature, we will focus on the asymptotic properties of the global minimum and

abstract from optimization error. Lastly, note that the quadratic loss function

in (4) can accommodate weights on different components of hi, although here for

simplicity we present the unweighted case.

Second step: estimation. We maximize the log-likelihood function with re-

spect to common parameters θ and group-specific effects α, where the groups are

given by the k̂i estimated in the first step. We define the two-step GFE estimator

as: (
θ̂, α̂(1), ..., α̂(K)

)
= argmax

(θ,α(1),...,α(K))

N∑
i=1

ln fi

(
α
(
k̂i

)
, θ
)
. (5)

Note that, in contrast to fixed-effects (FE) maximum likelihood, this second step

involves a maximization with respect to K group-specific parameters instead of

when α(·, ·) is strictly increasing in its first argument and G is strictly increasing, since then

ϕ(ξ) = plimT→∞
1
T

∑T
t=1G(α(ξ, λt0)) is strictly increasing.
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N individual-specific ones. In models with time-varying heterogeneity, α(k) will

simply be a vector (α1(k)′, ..., αT (k)′)′.

Choice of K. Two-step GFE estimation requires setting a number of groups

K. We propose a simple data-driven selection rule based on the first step. The

convergence rate of the kmeans estimator (and the rate of the GFE estima-

tor) will be governed by two quantities: the kmeans objective function Q̂(K) =

1
N

∑N
i=1 ‖hi − ĥ(k̂i)‖2, which decreases as K gets larger and the group approxi-

mation becomes more accurate, and the variability Vh = E[‖hi − ϕ(ξi0)‖2] of the

moment hi, which does not depend on K. We take the smallest K that guarantees

that Q̂(K) is of the same or lower order as Vh. That is, letting V̂h = Vh + op(1/T ),

we suggest setting:

K̂ = min
K≥1

{
K : Q̂(K) ≤ γV̂h

}
, (6)

where γ ∈ (0, 1] is a user-specified parameter.7 In the simulations in the next

subsection we will set γ = 1, although smaller γ values corresponding to larger

K’s will also be supported by our theory.

2.4 Illustrative simulations

To illustrate the performance of GFE in models where heterogeneity follows a

nonlinear factor structure, we present the results of a small-scale simulation study

based on our two examples (2) and (3). In both cases, we assume that the type

ξi0 governing heterogeneity is scalar. We compare the bias of GFE to that of FE

and interactive FE estimators. In the supplemental material, we provide details

on the simulations and report additional results.

In Figure 1, we compare GFE and FE in model (2), using a CRRA functional

form: u(α) = eα(1−η)−1
1−η , with a risk aversion parameter η ∈ {1, 2}. We focus on the

difference in costs c(0; θ0)−c(1; θ0), which measures the degree of state dependence

in participation decisions. We take hi = (W i, Y i)
′ as moments for GFE, and report

average parameter estimates over 1000 simulations. We set N=1000 and vary T

7When hi = 1
T

∑T
t=1 h(Yit, Xit) and observations are independent over time, one may take

V̂h = 1
NT 2

∑N
i=1

∑T
t=1 ‖h(Yit, Xit) − hi‖2. With dependent data, one can use trimming or the

bootstrap to estimate Vh (Hahn and Kuersteiner, 2011, Arellano and Hahn, 2007).
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Figure 1: Model (2) of wages and participation
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Notes: Means of c(0; θ̂) − c(1; θ̂) over 1000 simulations. GFE is indicated in solid, FE is in

dashed, and the truth c(0; θ0) − c(1; θ0) = 1 is in dotted. N = 1000, and T is indicated on the

x-axis. η is the risk aversion parameter in u(·). See the supplemental material for details.

between 5 and 50. We find that FE is more biased than GFE for both values of risk

aversion. This is consistent with wages and participation providing informative

moments about the latent type in this setting.

In Figure 2 we compare GFE, FE, and interactive FE in model (3) with Xit

scalar, using a CES specification: αit0 = (aξσi0 + (1− a)λσt0)
1
σ , for σ∈{−10, 0, 1, 10}

and a=0.5, and µit0 = αit0. The factors λt0 and the individual loadings ξi0 enter

heterogeneity in a nonlinear way. We show estimates of θ0 for various estimators:

GFE, FE with additive individual and time effects, and interactive FE with a

single multiplicative factor. We use (Y i, X i)
′ as moments for GFE. Note that both

Figure 2: Probit model (3) with time-varying heterogeneity
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Notes: Means of θ̂ over 1000 simulations. GFE is indicated in solid, FE is in dashed, interactive

FE is in dash-dotted, and the truth θ0 = 1 is in dotted. N = 1000, and T is indicated on the

x-axis. σ is the substitution parameter in α(·, ·). See the supplemental material for details.
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Y i and X i are informative about ξi0 in this data generating process. We report

parameter averages over 1000 simulations, for N=1000. We find that, while GFE,

FE, and interactive FE are all biased, the bias of GFE is smaller across all σ

values.8

3 Asymptotic properties

In this section we provide asymptotic expansions for two-step GFE estimators.

Our first result is a rate of convergence for kmeans. Let us define the approximation

error one would make if one were to discretize the latent types ξi0 directly, as:

Bξ(K) = min
(ξ̃(1),...,ξ̃(K),k1,...,kN)

1

N

N∑
i=1

∥∥∥ξi0 − ξ̃(ki)∥∥∥2

, (7)

where, similarly to (4), the minimum is taken with respect to all partitions {ki}

and vectors ξ̃(k). In the asymptotic analysis we let T = TN and K = KN tend to

infinity jointly with N .

Lemma 1. Let Assumption 2 hold. Let ĥ(1), ..., ĥ(K) and k̂1, ..., k̂N given by (4).

Then, as N, T,K tend to infinity we have:

1

N

N∑
i=1

∥∥∥ĥ(k̂i)− ϕ(ξi0)
∥∥∥2

= Op

(
1

T

)
+Op (Bξ(K)) .

The bound in Lemma 1 has two terms: an Op(1/T ) term that depends on the

number of periods used to construct the moments hi, and an Op (Bξ(K)) term

that reflects the presence of an approximation error. The rate at which Bξ(K)

tends to zero depends on the dimension of ξi0. Graf and Luschgy (2002, Theorem

5.3) provide explicit characterizations in the case where ξi0 has compact support.9

For example, the following lemma implies that Bξ(K) = Op(K
−2) when ξi0 is

one-dimensional, and Bξ(K) = Op(K
−1) when ξi0 is two-dimensional.

8Large-N,T theory implies that additive and interactive FE are consistent when σ = 1
and σ = 0, respectively. Figure 2 shows that, despite being large-N,T consistent in these
specifications, in our simulations, additive and interactive FE have larger biases than GFE for
the N and T values we consider.

9See Graf and Luschgy (2002, p. 875) for a discussion of the compact support assumption.
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Lemma 2. (Graf and Luschgy, 2002) Let ξi0 be random vectors with compact

support in Rd. Then, as N,K tend to infinity we have Bξ(K) = Op(K
− 2
d ).

We now use these results to study the properties of GFE in models with time-

invariant and time-varying heterogeneity, in turn. We use the shorthand notation

EZ(W ) and EZ=z(W ) for the conditional expectations of W given Z and Z = z,

respectively. In the time-varying case, we denote as λ0 the process of λt0’s, and

as Eλ0=λ(W ) the conditional expectation of W given λ0 = λ. We use a similar

notation for variances. Finally, ‖M‖ denotes the spectral norm of a matrix M .

3.1 Time-invariant heterogeneity

To state our first main theorem, where heterogeneity is time-invariant, we make

the following assumptions, where `it(αi, θ) = ln f(Yit |Yi,t−1, Xit, αi, θ), `i(αi, θ) =

1
T

∑T
t=1 `it(αi, θ), and α(θ, ξ) = argmaxα Eξi0=ξ(`i(α, θ)) for all θ, ξ.

Assumption 3. (regularity, time-invariant heterogeneity)

(i) (Y ′i , X
′
i, ξ
′
i0, h

′
i)
′ are i.i.d.; (Y ′it, X

′
it)
′ are stationary for all i; `it(α, θ) is three

times differentiable in (α, θ) for all i, t;10 and the parameter space Θ for θ0

is compact, the space for αi0 is compact, and θ0 belongs to the interior of Θ.

(ii) N, T,K tend jointly to infinity; supξ,α,θ |Eξi0=ξ(`it(α, θ))| = O(1), and sim-

ilarly for the first three derivatives of `it; infξ,α,θ Eξi0=ξ(−∂2`it(α,θ)
∂α∂α′

) > 0;

and maxi supα,θ
∣∣`i(α, θ)− Eξi0 (`i(α, θ))

∣∣ = op (1), and similarly for the first

three derivatives of `i.

(iii) infξ,θ Eξi0=ξ(−∂2`it(α(θ,ξ),θ)
∂α∂α′

) > 0; E[ 1
T

∑T
t=1 `it(α(θ, ξi0), θ)] has a unique max-

imum at θ0 on Θ, and its matrix of second derivatives is −H < 0; and

supθ
1
NT

∑N
i=1

∑T
t=1 ‖

∂2`it(α(θ,ξi0),θ)
∂θ∂α′

‖2 = Op(1).

(iv) supξ̃,α ‖
∂
∂ξ′

∣∣
ξ=ξ̃

Eξi0=ξ(vec ∂2`it(α,θ0)
∂θ∂α′

)‖, supξ̃,α ‖
∂
∂ξ′

∣∣
ξ=ξ̃

Eξi0=ξ(vec ∂2`it(α,θ0)
∂α∂α′

)‖, and

supξ̃,θ ‖
∂
∂ξ′

∣∣
ξ=ξ̃

Eξi0=ξ(
∂`it(α(θ,ξ̃),θ)

∂α
)‖ are O(1).

In part (i) in Assumption 3 we treat heterogeneity as random in order to use

Lemma 2, which requires ξi0 to be i.i.d. draws from a distribution. However, note

10That is, ln f(yit | yi,t−1, xit, α, θ) is three times differentiable in (α, θ), for almost all
(yit, yit−1, xit).

12



we do not restrict how αi0 and µi0 depend on each other. Moreover, while our

results require asymptotic stationarity of the time-series processes, the theorem

could be extended to allow for nonstationary initial conditions.

In part (ii) we require strict concavity of the log-likelihood as a function of α.

Concavity holds in a number of nonlinear panel data models such as probit and

logit models, tobit, Poisson, or multinomial logit; see Fernández-Val and Weidner

(2016) and Chen et al. (2020). One can show that Theorem 1 continues to hold

without concavity, under an identification condition and an assumption bounding

the derivatives of the empirical GFE objective function. Importantly, note that

H−1 is the asymptotic variance of the FE estimator. As a result, H being positive

definite rules out models that are not identified under FE, such as a linear model

with a time-invariant covariate and a heterogeneous intercept.

In part (iii) we introduce the target log-likelihood 1
NT

∑N
i=1

∑T
t=1 `it(α(θ, ξi0), θ)

(Arellano and Hahn, 2007), which we will show approximates the GFE log-likelihood

in large samples under our assumptions (note that α(θ0, ξi0)=αi0). In part (iv) we

require some moments to be bounded asymptotically.

We now state our first main result, where we denote, evaluating all quantities

at true values (θ0, αi0) and omitting the dependence from the notation:

si =
1

T

T∑
t=1

(
∂`it
∂θ

+ Eξi0

(
∂2`it
∂θ∂α′

)[
Eξi0

(
− ∂2`it
∂α∂α′

)]−1
∂`it
∂α

)
, (8)

H = plim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

(
Eξi0

(
− ∂2`it
∂θ∂θ′

)

− Eξi0

(
∂2`it
∂θ∂α′

)[
Eξi0

(
− ∂2`it
∂α∂α′

)]−1

Eξi0

(
∂2`it
∂α∂θ′

))
. (9)

Theorem 1. Let the conditions of Lemmas 1 and 2 and Assumptions 1, 2 and 3

hold. Then, as N, T,K tend to infinity we have:

θ̂ = θ0 +H−1 1

N

N∑
i=1

si +Op

(
1

T

)
+Op

(
K−

2
d

)
+ op

(
1√
NT

)
. (10)

The first three terms in (10) also appear in large-N, T expansions of FE estima-
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tors (e.g., Hahn and Newey, 2004).11 Similarly to FE, GFE is subject to incidental

parameter Op(1/T ) bias. This contrasts with the properties of GFE estimators

under discrete heterogeneity (e.g., Hahn and Moon, 2010, Bonhomme and Man-

resa, 2015). Indeed, when heterogeneity is not restricted to have a small number

of points of support, classification noise affects the properties of second-step es-

timators in general. This motivates using bias reduction techniques for inference

analogous to those used in FE, as we will discuss in the next section.

The Op(K
− 2
d ) term in (10) reflects the approximation error, which depends

on the number of groups. Setting K = K̂ according to (6) guarantees that the

approximation error is Op(1/T ). Formally, we have the following result.

Corollary 1. Let the conditions in Theorem 1 hold. Let K = K̂ given by (6),

with γ = O(1). Then, as N, T tend to infinity we have:

θ̂ = θ0 +H−1 1

N

N∑
i=1

si +Op

(
1

T

)
+ op

(
1√
NT

)
. (11)

Under Corollary 1, the biases of FE and GFE have the same order of magni-

tude. However, the required value of K depends on the dimension d of individual

heterogeneity. Specifically, when ξi0 follows a continuous distribution of dimen-

sion d, setting K proportional to or greater than min(T
d
2 , N) will ensure that the

approximation error is Op(1/T ). For small d (e.g., when d = 1) this will typically

require a small number of groups (of the order of T
1
2 ).

GFE can have advantages compared to FE, for two reasons. First, the two-step

method can allow researchers to select moments that are particularly informative

about the unobserved heterogeneity. To provide intuition, consider a setting where

the number of groups is sufficiently large for the approximation error to be of

smaller order compared to 1/T , yet K/N tends to zero. We have the following.

Corollary 2. Let the conditions in Theorem 1 hold. Let K = K̂ given by (6),

with γ = o(1). Suppose that K/N tends to zero, and that Assumption A1 in the

11In the supplemental material we provide a similar expansion for GFE estimators of average
effects M0 = 1

NT

∑N
i=1

∑T
t=1m (Xit, αi0, θ0), which are functions of both common parameters

and individual heterogeneity.
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appendix holds. Then the Op(1/T ) term in (11) takes the explicit form C/T +

op(1/T ), where:

C

T
= H−1 ∂

∂θ

∣∣∣∣
θ0

E
[

1

2

∥∥α̂i(θ)−Eξi0(α̂i(θ))∥∥2

Ωi(θ)
− 1

2
‖α̂i(θ)−Ehi(α̂i(θ))‖

2
Ωi(θ)

]
, (12)

with α̂i(θ) = argmaxα `i(θ, α), Ωi(θ) = Eξi0(−
∂2`it(α(θ,ξi0),θ)

∂α∂α′
), and ‖V ‖2

Ω = V ′ΩV .

Corollary 2 shows that the first-order asymptotic bias of GFE is the difference

between two terms. The bias is zero when hi is an injective function of ξi0; i.e.,

when εi = hi−ϕ(ξi0) = 0. More generally, the bias can be expanded in εi, and it is

small when moments provide accurate estimates of the latent types. Moreover, the

first term on the right-hand side of (12) coincides with the bias of FE (e.g., Arellano

and Hahn, 2007). The form of (12) implies that the biases of FE and GFE are

equal when the moments are the FE estimates hi = α̂i(θ0), however other moment

choices can lead to smaller biases. From this perspective, GFE provides flexibility

to use well-suited proxies of the latent types. As an example, our simulations of

the labor force participation model (2) show that, by jointly exploiting wages and

participation to construct moments that are informative about the latent type,

GFE can have smaller bias than FE (and smaller mean squared error as well, as

shown in the supplemental material).

A second advantage of GFE comes from the use of grouping, and from the

resulting regularization. Indeed, individual FE estimates can be highly variable

whenever the number of parameters per individual is large. In such cases, reduc-

ing the number of parameters through grouping can improve performance. For

instance, the ability to handle multiple components of heterogeneity is central to

the performance of GFE in models with time-varying unobserved heterogeneity.

This is the case we focus on next.

3.2 Time-varying heterogeneity

To state our second main theorem, where heterogeneity is time-varying, we make

the following assumptions, where `it(αit, θ) = ln f(Yit |Yi,t−1, Xit, αit, θ), `i(αi, θ) =

15



1
T

∑T
t=1 `it(αit, θ), and αt(θ, ξ) = argmaxα Eξi0=ξ,λ0=λ(`it(α, θ)).

12

Assumption 4. (regularity, time-varying heterogeneity)

(i) (Y ′i , X
′
i, ξ
′
i0, h

′
i)
′ are i.i.d. across i conditional on λ0; (Y ′it, X

′
it, λ

′
t0)′ are sta-

tionary for all i; `it(αit, θ) is three times differentiable, for all i, t; and Θ and

the space for αit0 are compact, and θ0 belongs to the interior of Θ.

(ii) N, T,K tend jointly to infinity; maxt supξ,λ,α,θ |Eξi0=ξ,λ0=λ(`it(α, θ))| = O(1),

and similarly for the first three derivatives of `it; the minimum (respectively,

maximum) eigenvalue of (−∂2`it(α,θ)
∂α∂α′

) is bounded away from zero (resp., in-

finity) with probability one, uniformly in i, t, α, θ; the third derivatives of

`it(α, θ) are Op(1), uniformly in i, t, α, θ; and 1
NT

∑N
i=1

∑T
t=1[`it(αit0, θ0) −

Eξi0,λ0(`it(αit0, θ0))]2 = Op(1), and similarly for the first three derivatives.

(iii) mint infξ,λ,θ Eξi0=ξ,λ0=λ(−∂2`it(α
t(θ,ξ),θ)

∂α∂α′
) > 0; E[ 1

T

∑T
t=1 `it(α

t(θ, ξi0), θ)] has a

unique maximum at θ0 on Θ, and its matrix of second derivatives is −H < 0;

and supθ
1
NT

∑N
i=1

∑T
t=1 ‖

∂2`it(α
t(θ,ξi0),θ)

∂θ∂α′
‖2 = Op(1).

(iv) ‖ ∂
∂ξ′

∣∣
ξ=ξ̃

Eξi0=ξ,λ0=λ(vec ∂2`it(α,θ0)
∂θ∂α′

)‖, ‖ ∂
∂ξ′

∣∣
ξ=ξ̃

Eξi0=ξ,λ0=λ(vec ∂2`it(α,θ0)
∂α∂α′

)‖, and

‖ ∂
∂ξ′

∣∣
ξ=ξ̃

Eξi0=ξ,λ0=λ(
∂`it(α

t(θ,ξ̃),θ)
∂α

)‖ are O(1), uniformly in t, ξ̃, λ, α, and θ.

(v) Ehi=h,ξi0=ξ,λ0=λ(
∂`it(α

t(θ,ξ),θ)
∂α

) and Ehi=h,ξi0=ξ,λ0=λ(vec ∂
∂θ′

∣∣
θ0

∂`it(α
t(θ,ξ),θ)
∂α

) are twice

differentiable with respect to h, with first and second derivatives that are uni-

formly bounded in t, ξ, λ, h in the support of hi given λ0 = λ, and θ ∈ Θ; and

‖Varhi=h,ξi0=ξ,λ0=λ(
∂`it(α

t(θ,ξ),θ)
∂α

)‖ and ‖Varhi=h,ξi0=ξ,λ0=λ(vec ∂
∂θ′

∣∣
θ0

∂`it(α
t(θ,ξ),θ)
∂α

)‖

are O(1), uniformly in t, ξ, λ, h, and θ.

In part (ii) in Assumption 4, we impose a stronger concavity condition than

in Assumption 3.13 The other parts are similar to Assumption 3, except part (v)

where we require regularity of certain conditional expectations and variances.

We next state our second main result, where, differently from Theorem 1, si in

(8) and H in (9) are now evaluated at (θ0, αit0), and expectations are conditional

on (ξi0, λ0).

12Note that αt(θ, ξi0) depends on the process λ0 in addition to the type ξi0, although we leave
the dependence on λ0 implicit in the notation. In a static model, αt(θ, ξi0) is a function of ξi0 and
λt0, while in a dynamic model it also depends on the history of the time effects (λt0, λt−1,0, ...).

13In particular, we use part (ii) in Assumption 4 to establish consistency. Note that this
condition can be restrictive in models with time-varying random coefficients.
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Theorem 2. Let the conditions of Lemmas 1 and 2 and Assumptions 1, 2 and 4

hold. Then, as N, T,K tend to infinity such that K/N tends to zero, we have:

θ̂ = θ0 +H−1 1

N

N∑
i=1

si +Op

(
1

T

)
+Op

(
K

N

)
+Op

(
K−

2
d

)
+ op

(
1√
NT

)
. (13)

Theorem 2 shows that GFE is consistent as N, T,K tend to infinity and K/N

tends to zero. This requires no parametric assumption about how ξi0 and λt0 affect

individual and time heterogeneity, unlike additive or interactive FE methods.

To give intuition, consider the probit model (3) with time-varying unobserv-

ables. Under Assumption 2, in the first step, GFE consistently estimates an injec-

tive function ϕi0 = ϕ(ξi0) of the type. One can then rewrite the outcome equation

in (3) as Yit = 1 {X ′itθ0 + α(ψ(ϕi0), λt0) + Uit ≥ 0}, where ψ is the function intro-

duced in Assumption 2, and αit0 = α(ψ(ϕi0), λt0) is simply a time-varying function

of ϕi0. In the second step, GFE estimates this function by including group-time

indicators in the probit regression.

As in Theorem 1, the expansion in Theorem 2 features a combination of inci-

dental parameter bias and approximation error. When using the rule (6) for K,

the approximation error is of the same or lower order compared to 1/T. However,

the Op(K/N) term is a new contribution relative to the time-invariant case, which

reflects the estimation of KT group-specific parameters using NT observations.

As an example, when d = 1 and K is chosen of the order of T
1
2 , the Op terms

in (13) are Op(1/T + T
1
2/N).14 Although this rate of convergence can be fast

when N is sufficiently large relative to T , it is too slow to apply conventional

bias-reduction methods for inference. In the next section, under the additional

assumption that time heterogeneity λt0 is low-dimensional, we describe how to

obtain a faster convergence rate by grouping both individuals and time periods.

14When N/T
3
2 → 0, one could obtain a faster rate in (13) by choosing another rule for K.
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4 Complements and extensions

4.1 Bias reduction and inference

In models with time-invariant heterogeneity, Corollary 1 can be used to charac-

terize the asymptotic distribution of GFE estimators. However, as in FE, the

presence of the Op(1/T ) term in (11) shifts the distribution of θ̂ away from θ0

whenever T is not large relative to N . A variety of methods are available to bias-

correct FE estimators and construct asymptotically valid confidence intervals; see

Arellano and Hahn (2007) for a review. Consider the setup of Corollary 1, under

the additional assumption that the Op(1/T ) term in (11) is equal to C/T+op(1/T )

for some constant C. In this case, one can show that half-panel jackknife (Dhaene

and Jochmans, 2015) gives asymptotically valid inference based on GFE as N and

T tend to infinity at the same rate.15 The distribution of the bias-corrected GFE

estimator is then asymptotically normal centered at the truth, and the asymptotic

variance H−1 can be consistently estimated by replacing the expectations in (8)

and (9) by group-specific means.

In settings where heterogeneity varies over time, it can be desirable to group

not only individuals as in (4), but also time periods (or alternatively counties

or markets, depending on the application). We now describe such a method,

and discuss its potential for performing inference in models with time-varying

heterogeneity. In the two-way GFE approach, we classify time periods based on

cross-sectional moments wt = 1
N

∑N
i=1 w(Yit, Xit), and compute:

(
ŵ(1), ..., ŵ(L), l̂1, ..., l̂T

)
= argmin

(w̃(1),...,w̃(L),l1,...,lT )

T∑
t=1

∥∥wt − w̃(lt)
∥∥2
, (14)

where {lt} are partitions of {1, ..., T} into L groups. Given the group indicators

k̂i and l̂t, we then maximize
∑N

i=1

∑T
t=1 ln f(Yit |Xit, α(k̂i, l̂t), θ), with respect to θ

and the KL group-specific parameters α(k, l).

15In particular, half-panel jackknife is valid under the conditions of Corollary 2, which requires
taking γ = o(1) in our rule (6) for K in order for the approximation error to be of small order.
Deriving primitive conditions for the validity of half-panel jackknife and other bias-reduction
methods for other choices of K is left for future work.
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Two-way GFE estimators can be expanded similarly to Theorem 2, under two

main additional assumptions: the model is static and observations are independent

across i and t, and the dimensions dλ of time heterogeneity λt0 and d of individual

heterogeneity ξi0 are both small. Then, for si and H as in Theorem 2, we show in

the supplemental material that:

θ̂ = θ0 +H−1 1

N

N∑
i=1

si+Op

(
1

T
+

1

N
+
KL

NT

)
+Op

(
K−

2
d + L

− 2
dλ

)
+op

(
1√
NT

)
.

Suppose d = dλ = 1, and K is given by (6) with γ asymptotically constant, with

an analogous choice for L. Then the Op term in this expansion can be shown

to be Op(1/T + 1/N). We leave to future work the formal study of the validity

of bias reduction methods for inference, such as two-way split panel jackknife

(Fernández-Val and Weidner, 2016), as N and T tend to infinity at the same rate.

4.2 GFE with conditional moments

Our theory shows that the dimension d of heterogeneity plays a key role in the

properties of GFE. While models with scalar latent types ξi0, such as model (2)

of wages and labor force participation, are not uncommon in economics, many

applications involve conditioning covariates. Under Assumptions 1 and 2, the

moments hi should, asymptotically, be injective functions of all the heterogeneity

coming from both Yi and Xi. However, when Xi depends on multiple components

of heterogeneity, this might lead to a large dimension d.

We now show that GFE can still perform well under a weaker form of injec-

tivity. Consider the case where Assumption 1 is replaced by αi0 = α(ξi0) and

µi0 = µ(ξi0, νi0), where νi0 is another latent component that affects covariates.

Moreover, instead of requiring injectivity for both ξi0 and νi0, let us maintain

Assumption 2, which only requires hi to be injective for ξi0. In other words, hi

needs to be directly informative about the unobserved heterogeneity component

ξi0 that appears in the conditional distribution of Yi given Xi. We show in the

supplemental material that, under regularity conditions otherwise similar to those

of Corollary 1, the convergence rate of GFE is unaffected by the dimension of νi0.
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Specifically, when K = K̂ is given by (6) with γ = O(1) (which adapts to the

dimension of ξi0 and not the one of νi0), we have:

θ̂ = θ0 +Op

(
1

T

)
+Op

(
1√
NT

)
. (15)

To prove (15) we assume that the rate condition T 1+ d
2 = O(N) holds, where d is

the (small) dimension of ξi0.16

In models with time-varying conditioning covariates, a simple way to target

moments to ξi0 is to construct hi using the conditional distribution of Yi given Xi.

To see this, consider a static model f(Yit |Xit, αi0, θ0) where Xit has finite support.

In this case, we have under appropriate conditions:

∑T
t=1 1{Xit = x}h(Yit, Xit)∑T

t=1 1{Xit = x}︸ ︷︷ ︸
=hi(x)

= EXit=x,ξi0 [h(Yit, Xit)]︸ ︷︷ ︸
=ϕ(x,ξi0)

+ op (1) ,

where hi(x) is only defined when
∑T

t=1 1{Xit = x} 6= 0, and, importantly, ϕ(x, ξi0)

does not depend on νi0. In the supplemental material we discuss implementation,

and we report simulation results in a probit model with binary covariates. We

find that using conditional moments can enhance the performance of GFE in

such settings. We leave the analysis of conditional moments in the presence of

continuous covariates to future work.

5 Conclusion

In this paper, we analyze some properties of two-step grouped fixed-effects

(GFE) methods in settings where population heterogeneity is not discrete. Our

framework relies on two main assumptions: low-dimensional individual hetero-

geneity, and the availability of moments to approximate the latent types. In many

economic models, individual types are low-dimensional. By taking advantage of

16In the supplemental material, we provide an asymptotic expansion for GFE in a linear
homoskedastic model under a small approximation error, as in Corollary 2. The argument
requires no restriction on the relative rates of N and T . Interestingly, in this case the asymptotic
variances of GFE and FE differ, since the within-group variation in νi0 tends to decrease the
variance, yet the expansion features an additional score term compared to Theorem 1.
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this feature, GFE can allow for flexible forms of heterogeneity across individuals

and over time.

GFE methods are of interest in various applied settings. In a previous version

of this paper, we used two-step GFE to estimate a dynamic structural model of

location choice in the spirit of Kennan and Walker (2011), and we analyzed the

performance of the discrete estimator of Bonhomme et al. (2019) for matched

employer-employee data in the presence of continuous firm heterogeneity. Other

potential applications include nonlinear factor models, nonparametric and semi-

parametric panel data models such as quantile regression with individual effects,

and network models.
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APPENDIX

Proof of Lemma 1. Define Bϕ(ξ)(K) = min(h̃,{ki})
1
N

∑N
i=1 ‖ϕ(ξi0) − h̃(ki)‖2,

similarly to (7), and denote: (h, {ki}) = argmin(h̃,{ki})
∑N

i=1 ‖ϕ(ξi0) − h̃(ki)‖2.

By definition of (ĥ, {k̂i}), we have:
∑N

i=1 ‖hi − ĥ(k̂i)‖2 ≤
∑N

i=1 ‖hi − h(ki)‖
2 (al-

most surely). Letting εi = hi − ϕ(ξi0), we thus have, using the triangle inequality

twice:

1

N

N∑
i=1

∥∥∥ϕ(ξi0)− ĥ(k̂i)
∥∥∥2

≤ 2

N

N∑
i=1

∥∥∥hi − ĥ(k̂i)
∥∥∥2

+
2

N

N∑
i=1

‖hi − ϕ(ξi0)‖2

≤ 2

N

N∑
i=1

‖hi − h(ki)‖
2 +

2

N

N∑
i=1

‖εi‖2≤4

(
1

N

N∑
i=1

‖ϕ(ξi0)− h(ki)‖
2

)
︸ ︷︷ ︸

=Bϕ(ξ)(K)

+
6

N

N∑
i=1

‖εi‖2.

By Assumption 2, 1
N

∑N
i=1 ‖εi‖2 = Op(1/T ). In addition, since ϕ is Lipschitz-

continuous, there exists a constant τ such that ‖ϕ(ξ′)− ϕ(ξ)‖ ≤ τ‖ξ′ − ξ‖ for all

(ξ, ξ′). This implies that Bϕ(ξ)(K) ≤ τ 2Bξ(K), and Lemma 1 follows.
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Proofs of Theorems 1 and 2. It is convenient to use a common notation for

Theorems 1 and 2. Let p denote the number of individual-specific vectors αji ,

j ∈ {1, ..., p}. In the time-invariant case: p = 1, j = 1, and αji = αi. In the

time-varying case: p = T , j ∈ {1, ..., T}, and αji = αit. Denote `ij = `i in the time-

invariant case, and `ij = `it in the time-varying case. Let vij =
∂`ij
∂α

, vαij =
∂2`ij
∂α∂α′

,

vθij =
∂2`ij
∂θ∂α′

, and vααij =
∂3`ij

∂α∂α′⊗∂α′ (which is a dimαji0 × (dimαji0)2 matrix). Let,

for all θ ∈ Θ, j ∈ {1, ..., p}, and k ∈ {1, ..., K}, α̂j(k, θ)=argmaxα
∑N

i=1 1{k̂i =

k}`ij (α, θ). Likewise, denote αj(θ, ξ)=argmaxαEξi0=ξ,λ0=λ(`ij(α, θ)). We will in-

dex expectations by ξi0 and λ0, although the conditioning on λ0 is not needed

in the time-invariant case of Theorem 1. Finally, let δ = 1
T

+ K−
2
d in the time-

invariant case, and let δ = 1
T

+ K
N

+K−
2
d in the time-varying case.

To show consistency of θ̂, we first establish the next technical lemma (see the

supplemental material for the proof):

Lemma A1. Under the conditions of either Theorem 1 or Theorem 2 we have:

1

Np

N∑
i=1

p∑
j=1

∥∥∥α̂j(k̂i, θ)− αj(θ, ξi0)
∥∥∥2

= Op(δ), ∀θ ∈ Θ, (A1)

sup
θ∈Θ

1

Np

N∑
i=1

p∑
j=1

∥∥∥α̂j(k̂i, θ)− αj(θ, ξi0)
∥∥∥2

= op (1) . (A2)

From (A2) we then verify using a Taylor expansion that:

sup
θ∈Θ

∣∣∣∣∣ 1

Np

N∑
i=1

p∑
j=1

`ij

(
α̂j(k̂i, θ), θ

)
− 1

Np

N∑
i=1

p∑
j=1

`ij
(
αj (θ, ξi0) , θ

)∣∣∣∣∣ = op(1).

Consistency of θ̂ then follows by standard arguments.

Next, the two key steps in the proof consist in showing the following two ex-

pansions:

1

Np

N∑
i=1

p∑
j=1

∂`ij(α̂
j(k̂i, θ0), θ0)

∂θ
=

1

Np

N∑
i=1

p∑
j=1

∂

∂θ

∣∣∣∣
θ0

`ij
(
αj(θ, ξi0), θ

)
+Op (δ) , (A3)

1

Np

N∑
i=1

p∑
j=1

∂2

∂θ∂θ′

∣∣∣∣
θ0

(
`ij

(
α̂j(k̂i, θ), θ

)
− `ij

(
αj(θ, ξi0), θ

))
= op(1). (A4)
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To show (A3), we show the following technical lemma, where we omit refer-

ences to the evaluation points θ0 and αji0 for conciseness:

Lemma A2. Under the conditions of either Theorem 1 or Theorem 2 we have:

1

Np

N∑
i=1

p∑
j=1

Eξi0,λ0
(
vθij
) [

Eξi0,λ0
(
vαij
)]−1

vαij

(
α̂j(k̂i, θ0)− αji0 + (vαij)

−1vij

)
= Op(δ),

1

Np

N∑
i=1

p∑
j=1

(
vθij
(
vαij
)−1−Eξi0,λ0

(
vθij
) [

Eξi0,λ0
(
vαij
)]−1

)
vαij

(
α̂j(k̂i, θ0)−αji0

)
=Op(δ).

Now, expanding vθij(α̂j(k̂i, θ0), θ0) around αj(θ0, ξi0)=αji0, and using the identity

∂αj(θ0,ξi0)
∂θ′

=
[
Eξi0,λ0

(
−vαij

)]−1 Eξi0,λ0
(
vθij
)′

, we obtain:

1

Np

N∑
i=1

p∑
j=1

∂`ij(α̂
j(k̂i, θ0), θ0)

∂θ
− 1

Np

N∑
i=1

p∑
j=1

∂

∂θ

∣∣∣∣
θ0

`ij
(
αj(θ, ξi0), θ

)
=

1

Np

N∑
i=1

p∑
j=1

{
vθij

(
α̂j(k̂i, θ0)−αji0

)
+Eξi0,λ0

(
vθij
) [

Eξi0,λ0
(
vαij
)]−1

vij

}
+Op(δ),

and summing the two parts in Lemma A2 shows that the last expression is Op(δ).

It follows that (A3) is satisfied.

To show (A4), we show the next technical lemma:

Lemma A3. Under the conditions of either Theorem 1 or Theorem 2 we have:

1

Np

N∑
i=1

p∑
j=1

∥∥∥∥∥∂α̂j(k̂i, θ0)

∂θ′
− ∂αj(θ0, ξi0)

∂θ′

∥∥∥∥∥
2

= op (1) . (A5)

Using (A1) and the identity ∂αj(θ0,ξi0)
∂θ′

=
[
Eξi0,λ0

(
−vαij

)]−1 Eξi0,λ0
(
vθij
)′

, we thus

have, under the conditions of either Theorem 1 or 2:

1

Np

N∑
i=1

p∑
j=1

∂2

∂θ∂θ′

∣∣∣∣
θ0

`ij

(
α̂j(k̂i, θ), θ

)
− 1

Np

N∑
i=1

p∑
j=1

∂2

∂θ∂θ′

∣∣∣∣
θ0

`ij
(
αj(θ, ξi0), θ

)
=

1

Np

N∑
i=1

p∑
j=1

vθij

(
∂α̂j(k̂i, θ0)

∂θ′
− ∂αj(θ0, ξi0)

∂θ′

)
+ op (1) = op(1),

where we have used Lemma A3 in the last equality.
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Finally, to show Theorems 1 and 2 we expand the GFE score as:

1

Np

N∑
i=1

p∑
j=1

∂`ij(α̂
j(k̂i, θ0), θ0)

∂θ
+

(
∂

∂θ′

∣∣∣
θ̃

1

Np

N∑
i=1

p∑
j=1

∂`ij(α̂
j(k̂i, θ), θ)

∂θ

)(
θ̂−θ0

)
=0,

where θ̃ lies between θ0 and θ̂, and further expand ∂
∂θ′

∣∣
θ̃

1
Np

∑N
i=1

∑p
j=1

∂`ij(α̂
j(k̂i,θ),θ)

∂θ

around θ0 using that θ̃ is consistent. Lastly, we use (A3) and (A4), and note that,

if `i(θ) = 1
p

∑p
j=1 `ij

(
αj (θ, ξi0) , θ

)
denotes the individual target log-likelihood,

then si = ∂`i(θ0)
∂θ

and H = plimN,T→∞
1
N

∑N
i=1 Eξi0,λ0(−

∂2`i(θ0)
∂θ∂θ′

).

Proof of Corollary 1. By the triangle inequality: 1
N

∑N
i=1 ‖ĥ(k̂i)− ϕ(ξi0)‖2 ≤

2Q̂(K) + Op(
1
T

) = Op(
1
T

). The proof of Theorem 1 is then unchanged, simply

redefining δ=1/T (since heterogeneity is time-invariant here). This shows (11).

Proof of Corollary 2. To prove Corollary 2, we follow a likelihood approach

(see Arellano and Hahn, 2007). Consider the difference between the GFE and FE

profile log-likelihoods: ∆L(θ) = 1
N

∑N
i=1 `i(α̂(k̂i, θ), θ)− 1

N

∑N
i=1 `i(α̂i(θ), θ).

Assumption A1. (regularity) Let ŵi = −∂2`i(α̂i(θ0),θ0)
∂α∂α′

, and ĝi = ∂2`i(α̂i(θ0),θ0)
∂θ∂α′

ŵ−1
i .

(i) `it(αi, θ) is four times differentiable, and its fourth derivatives satisfy similar

properties to the first three.

(ii) γ(h)={Ehi=h (ŵi)}−1Ehi=h (ŵiα̂i(θ0)) and λ(h)=Ehi=h (ĝiŵi) {Ehi=h (ŵi)}−1

are Lipschitz-continuous in h; and Varhi=h (ŵi(α̂i(θ0)− γ(hi))) = O( 1
T

) and

Varhi=h ((ĝi − λ(hi))ŵi) = O( 1
T

), uniformly in h.

Lemma A4. Let the conditions of Corollary 2 hold, and let νi(θ)=α̂i(θ)−Ehi(α̂i(θ)).

We have:

∂

∂θ

∣∣∣
θ0

∆L(θ)=− ∂

∂θ

∣∣∣
θ0

1

2N

N∑
i=1

νi(θ)
′Eξi0 [−vαi (α(θ, ξi0), θ)] νi(θ) + op

(
1

T

)
. (A6)

Corollary 2 follows, since the bias of the FE score is: ∂
∂θ

∣∣
θ0

[
1
N

∑N
i=1 `i(α̂i(θ), θ)−

1
N

∑N
i=1 `i(α(θ, ξi0), θ)

]
= ∂

∂θ

∣∣
θ0

1
2N

∑N
i=1 ν̂i(θ)

′Eξi0 [−v
α
i (α(θ, ξi0), θ)]ν̂i(θ) + op(

1
T

),

where ν̂i(θ) = α̂i(θ)− Eξi0 (α̂i(θ)); see, e.g., Arellano and Hahn (2007).
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SUPPLEMENTAL MATERIAL
“Discretizing Unobserved Heterogeneity”

S1 Proofs of technical lemmas

Lemma A1. From Assumption 3 (iii)-(iv) or 4 (iii)-(iv), both ∂αj(θ,ξ)
∂θ′

and

∂αj(θ,ξ)
∂ξ′

are uniformly bounded (in probability in the time-varying case). Let

aj(k, θ) = αj(θ, ψ(ĥ(k))). We thus have, using Lemmas 1 and 2:

sup
θ∈Θ

1

Np

∑
i,j

∥∥∥aj(k̂i, θ)−αj(θ, ξi0)
∥∥∥2

=sup
θ∈Θ

1

Np

∑
i,j

∥∥∥αj(θ, ψ(ĥ(k̂i)))−αj(θ, ψ(ϕ(ξi0)))
∥∥∥2

=Op

(
1

N

∑
i

‖ĥ(k̂i)− ϕ(ξi0)‖2

)
=Op(δ). (S1)

Let θ ∈ Θ. Expanding:
∑

i,j `ij(a
j(k̂i, θ), θ) ≤

∑
i,j `ij(α̂

j(k̂i, θ), θ) to second

order around αj(θ, ξi0), and using:

maxi,j sup(α,θ) ‖vαij(α, θ)‖ = Op(1), (S2)

we have, for some aij(θ) between α̂j(k̂i, θ) and αj(θ, ξi0):

1

2Np

∑
i,j

(
α̂j(k̂i, θ)− αj(θ, ξi0)

)′
[−vαij(aij(θ), θ)]

(
α̂j(k̂i, θ)− αj(θ, ξi0)

)
≤ 1

Np

∑
i,j

vij(α
j(θ, ξi0), θ)′

(
α̂j(k̂i, θ)− aj(k̂i, θ)

)
+Op(δ)

=
1

Np

∑
i,j

vj(k̂i, θ)
′
(
α̂j(k̂i, θ)− aj(k̂i, θ)

)
+Op(δ), (S3)

where vj(k, θ) denotes the mean over i of vij(α
j(θ, ξi0), θ) in group k̂i = k, and the

Op(δ) terms are uniform in θ by (S1).

Now, by Assumption 3 (ii) or 4 (ii) there exists a constant c > 0 such that:

mini,j inf(α,θ) mineig
[
−vαij(α, θ)

]
≥ c+ op(1), (S4)

where mineig(M) is the minimum eigenvalue of M . Let A = 1
Np

∑
i,j ‖α̂

j(k̂i, θ)−
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αj(θ, ξi0)‖2. By (S3) and the Cauchy Schwarz inequality, we have:

A ≤ Op

( 1

Np

∑
i,j

∥∥∥vj(k̂i, θ)∥∥∥2
) 1

2
(

1

Np

∑
i,j

∥∥∥α̂j(k̂i, θ)− aj(k̂i, θ)∥∥∥2
) 1

2

+Op(δ).

By (S1) and the triangle inequality: ( 1
Np

∑
i,j ‖α̂

j(k̂i, θ) − aj(k̂i, θ)‖2)
1
2 ≤ A

1
2 +

Op(δ
1
2 ). Hence: A = Op

[(
1
Np

∑
i,j ‖vj(k̂i, θ)‖2

) 1
2
(
A

1
2 +Op(δ

1
2 )
)]

+ Op(δ), which

implies:

A = Op

(
1

Np

∑
i,j

‖vj(k̂i, θ)‖2

)
+Op(δ). (S5)

We are now going to show that, for all θ ∈ Θ:

1

Np

∑
i,j

∥∥∥vj(k̂i, θ)∥∥∥2

= Op (δ) . (S6)

Using (S5) and (S6) will then imply (A1). Under the conditions of Theorem 1, it is

easy to see that (S6) holds. We are now going to show (S6) under the conditions of

Theorem 2. Let, for all j, θ, h, ξ, λ: ρj(h, ξ, λ, θ) = Ehi=h,ξi0=ξ,λ0=λ(vij(α
j(θ, ξ), θ)),

and, for all i, j, θ: ζ ij(θ) = vij(α
j(θ, ξi0), θ)−ρj(hi, ξi0, λ0, θ). By Assumption 4 (v),

and letting hi = ϕ(ξi0)+εi, we can expand ρj(hi, ξi0, λ0, θ) twice around ϕ(ξi0) as:

ρj(ϕ(ξi0), ξi0, λ0, θ)+
∂ρj(ϕ(ξi0),ξi0,λ0,θ)

∂h′
εi+

1
2
ε′i
∂2ρj(a

j
iθ,ξi0,λ0,θ)

∂h∂h′
εi, where ajiθ lies between

hi and ϕ(ξi0). Hence, taking expectations, using that Eξi0,λ0
[
ρj(hi, ξi0, λ0, θ)

]
= 0,

and using Assumptions 2 and 4 (v), we have:

1

Np

∑
i,j

‖ρj(ϕ(ξi0), ξi0, λ0, θ)‖2=
1

Np

∑
i,j

∥∥∥∥∂ρj(ϕ(ξi0), ξi0, λ0, θ)

∂h′
Eξi0,λ0 [εi]

∥∥∥∥2

+op

(
1

T

)
,

which is Op(
1
T

). Hence: 1
Np

∑
i,j ‖ρj(hi, ξi0, λ0, θ)‖2 = Op(

1
T

). It thus follows from

the triangle inequality that:

1

Np

∑
i,j

‖vj(k̂i, θ)‖2 ≤ Op

(
1

T

)
+

2

Np

∑
i,j

‖ζj(k̂i, θ)‖2, (S7)

where ζj(k, θ) denotes the mean of ζ ij(θ) in group k̂i = k. Now, using that
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k̂1, ..., k̂N are functions of h1, ..., hN , we have:

E

[
1

Np

∑
i,j

‖ζj(k̂i, θ)‖2

]

=
1

Np

∑
k,j

E

[∑
i

∑
i′ 1{k̂i=k}1{k̂i′=k}Eh1,...,hN ,ξ10,...,ξN0,λ0

(
ζ ij(θ)

′ζ i′j(θ)
)∑

i 1{k̂i = k}

]
.

Furthermore, since observations are independent across i given λ0:

Eh1,...,hN ,ξ10,...,ξN0,λ0

(
ζ i1,j(θ)

′ζ i2,j(θ)
)

= Ehi1 ,ξi1,0,λ0
(
ζ i1,j(θ)

)′ Ehi2 ,ξi2,0,λ0 (ζ i2,j(θ)) = 0 for all i1 6= i2 and j.

Hence:

E

[
1

Np

∑
i,j

‖ζj(k̂i, θ)‖2

]
=

1

Np

∑
k,j

E

[∑
i 1{k̂i=k}Ehi,ξi0,λ0

(
ζ ij(θ)

′ζ ij(θ)
)∑

i 1{k̂i = k}

]
.

Finally, using that Ehi,ξi0,λ0
(
ζ ij(θ)

)
= 0, and using part (v) in Assumption 4:

Ehi=h,ξi0=ξ,λ0=λ

(
ζ ij(θ)

′ζ ij(θ)
)

= Tr
[
Varhi=h,ξi0=ξ,λ0=λ(vij(α

j(θ, ξi0), θ))
]

= O (1) ,

uniformly in h, ξ, λ.1 This implies that E
[

1
Np

∑
i,j ‖ζj(k̂i, θ)‖2

]
= O

(
K
N

)
, and

shows (S6) and (A1).

We are now going to show:

sup
θ∈Θ

1

Np

∑
i,j

‖vj(k̂i, θ)‖2 = op (1) . (S8)

Using a bounding argument similar to the one we used to show (A1), (A2) will

then follow. To see that (S8) holds, let Z(θ) = 1
Np

∑
i,j ‖vj(k̂i, θ)‖2. By (S6),

Z(θ) = Op(δ) for all θ ∈ Θ. Moreover: ∂Z(θ)
∂θ

= 2
Np

∑
i,j v

θ
j(k̂i, θ)vj(k̂i, θ) =

Op

(√
supθ∈Θ Z(θ)

)
uniformly in θ, using the Cauchy Schwarz inequality with ei-

ther Assumption 3 (ii) or 4 (ii), where vθj(k, θ̃) is the mean of ∂
∂θ

∣∣
θ=θ̃

vij(α
j(θ, ξi0), θ)′

1Note that the dimension of vij is fixed throughout, independent of the sample size.
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in group k̂i = k. Since Θ is compact, it follows that supθ∈Θ Z(θ) = op(1).2

Lemma A2. Let us omit references to θ0 and αji0 throughout, and let:

A =
1

Np

N∑
i=1

p∑
j=1

Eξi0,λ0
(
vθij
) [

Eξi0,λ0
(
vαij
)]−1

vαij

(
α̂j(k̂i, θ0)− αji0 + (vαij)

−1vij

)
,

B =
1

Np

N∑
i=1

p∑
j=1

(
vθij
(
vαij
)−1−Eξi0,λ0

(
vθij
) [

Eξi0,λ0
(
vαij
)]−1

)
vαij

(
α̂j(k̂i, θ0)−αji0

)
.

We first bound A. Expanding:
∑

i 1{k̂i=k}vij(α̂
j(k))=0 for all k, j, we have,

for aij between αji0 and α̂j(k̂i):

∑
i

1{k̂i = k}vij(αji0) +
∑
i

1{k̂i = k}vαij(α
j
i0)(α̂j(k̂i)− αji0)

+
1

2

∑
i

1{k̂i = k}vααij (aij)
(
α̂j(k̂i)− αji0

)
⊗
(
α̂j(k̂i)− αji0

)
= 0.

It follows that α̂j(k̂i) = α̃j(k̂i) + ṽj(k̂i) + w̃j(k̂i), where:

α̃j(k) =

(∑
i

1{k̂i = k}(−vαij)

)−1(∑
i

1{k̂i = k}(−vαij)α
j
i0

)
,

ṽj(k) =

(∑
i

1{k̂i = k}(−vαij)

)−1(∑
i

1{k̂i = k}vij

)
,

w̃j(k) =
1

2

(∑
i

1{k̂i = k}(−vαij)

)−1(∑
i

1{k̂i = k}vααij (aij)
(
α̂j(k̂i)− αji0

)⊗2
)
,

where a⊗2 = a⊗ a. Hence, we have:

A=
1

Np

∑
i,j

Eξi0,λ0
(
vθij
) [

Eξi0,λ0
(
vαij
)]−1

vαij

(
w̃j(k̂i)+α̃j(k̂i)−αji0+ṽj(k̂i)+(vαij)

−1vij

)
.

2Let υ > 0, ε > 0. There is M > 0 such that Pr
(

supθ∈Θ

∥∥∥∂Z(θ)
∂θ

∥∥∥ > M
√

supθ∈Θ Z(θ)
)
< ε

2 .

Take a finite cover of Θ = B1 ∪ ... ∪ BR, where Br are balls with centers θr and diameters

diamBr ≤ 1
2M

√
υ. Since: supθ∈Θ Z(θ) ≤ maxr Z(θr) + supθ

∥∥∥∂Z(θ)
∂θ

∥∥∥ 1
2M

√
υ, and since: a >

υ ⇒ a −
√
a 1

2

√
υ > υ

2 , we have: Pr (supθ∈Θ Z(θ) > υ) ≤ ε
2 + Pr

(
maxr Z(θr) >

υ
2

)
, which, by

(S6), is smaller than ε for N,T,K large enough.

29



Note first that:

1

Np

∑
i,j

Eξi0,λ0
(
vθij
) [

Eξi0,λ0
(
vαij
)]−1

vαijw̃j(k̂i)=Op(
1

Np

∑
i,j

‖α̂j(k̂i)−αji0‖2) = Op(δ),

where we have used (S2), (A1), and either Assumption 3 (ii) or Assumption 4 (ii).

Next, let zj(ξi0)′ = Eξi0,λ0
(
vθij
) [

Eξi0,λ0
(
vαij
)]−1

. We have:

1

Np

∑
i,j

Eξi0,λ0
(
vθij
) [

Eξi0,λ0
(
vαij
)]−1

vαij

(
α̃j(k̂i)− αji0

)
=

1

Np

∑
i,j

(
zj(ξi0)′ − z̃j

(
k̂i

)′)
vαij

(
α̃j(k̂i)− αji0

)
, (S9)

where, for all k, j:

z̃j(k) =

(∑
i

1{k̂i = k}(−vαij)

)−1(∑
i

1{k̂i = k}(−vαij)zj(ξi0)

)
. (S10)

Now we have, using that: αj 7→
∑

i

(
αj(k̂i)− αji0

)′
(−vαij)

(
αj(k̂i)− αji0

)
is mini-

mized at αj = α̃j, and using (S2) and (S4):

1

Np

∑
i,j

∥∥∥α̃j(k̂i)− αji0∥∥∥2

=Op

(
1

Np

∑
i,j

(
α̃j(k̂i)− αji0

)′
(−vαij)

(
α̃j(k̂i)− αji0

))

=Op

(
1

Np

∑
i,j

(
α̂j(k̂i)−αji0

)′
(−vαij)

(
α̂j(k̂i)−αji0

))
=Op

(
1

Np

∑
i,j

∥∥∥α̂j(k̂i)−αji0∥∥∥2
)
,

where the last expression is Op(δ) by (A1). Likewise, since by Assumption 3 (iv)

or 4 (iv)
∂ vec zj(ξ)

∂ξ′
is bounded (in probability) uniformly in j and ξ, we have:

1

Np

∑
i,j

∥∥∥z̃j(k̂i)−zj(ξi0)
∥∥∥2

=Op

(
1

Np

∑
i,j

(
z̃j(k̂i)−zj(ξi0)

)′
(−vαij)

(
z̃j(k̂i)−zj(ξi0)

))

= Op

(
1

Np

∑
i,j

(
zj

(
ψ
(
ĥ(k̂i)

))
− zj(ξi0)

)′
(−vαij)

(
zj

(
ψ
(
ĥ(k̂i)

))
− zj(ξi0)

))

= Op

(
1

Np

∑
i,j

∥∥∥ĥ(k̂i)− ϕ(ξi0)
∥∥∥2
)

= Op(δ), (S11)

30



where we have used (S2), (S4), Lemmas 1 and 2, and that ψ is Lipschitz-continuous.

Combining results, and using the Cauchy Schwarz inequality in (S9), we obtain:

1

Np

∑
i,j

Eξi0,λ0
(
vθij
) [

Eξi0,λ0
(
vαij
)]−1

vαij

(
α̃j(k̂i)− αji0

)
= Op(δ).

The last term in A is:

A3 =
1

Np

∑
i,j

Eξi0,λ0
(
vθij
) [

Eξi0,λ0
(
vαij
)]−1

(−vαij)
(

(−vαij)−1vij − ṽj(k̂i)
)
.

Since ṽj(k) = (
∑

i 1{k̂i = k}(−vαij))−1(
∑

i 1{k̂i = k}(−vαij)(−vαij)−1vij), we have:

A3=
1

Np

∑
i,j

(
zj(ξi0)′−z̃j

(
k̂i

)′)
(−vαij)(−vαij)−1vij=

1

Np

∑
i,j

(
zj(ξi0)′−z̃j

(
k̂i

)′)
vij

=
1

Np

∑
i,j

(
zj(ξi0)′ − z∗j

(
k̂i

)′)
vij +

1

Np

∑
i,j

(
z∗j

(
k̂i

)′
− z̃j

(
k̂i

)′)
vij, (S12)

where z̃j (k) is given by (S10), and:

z∗j (k)=

(∑
i

1{k̂i=k}Eξi0,λ0
(
−vαij

))−1(∑
i

1{k̂i=k}Eξi0,λ0
(
−vαij

)
zj(ξi0)

)
.

(S13)

Under the conditions of Theorem 1, it is easy to see that A3 = Op(δ). We are

now going to show that A3 = Op(δ) under the conditions of Theorem 2. To see

that the first term on the right-hand-side of (S12) is Op(δ), we use an argument

similar to the one we used to show (S6). Let ζ ij = vij − Ehi,ξi0,λ0(vij). Following

the same steps as the ones leading to (S7), we obtain:

1

Np

∑
i,j

∥∥Ehi,ξi0,λ0(vij)∥∥2
= Op

(
1

T

)
. (S14)

Moreover, by an argument similar to (S11), since Eξi0,λ0(−v
α
ij) is bounded away
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from zero with probability one, we have:

1

Np

∑
i,j

∥∥∥zj(ξi0)− z∗j (k̂i)
∥∥∥2

= Op(δ). (S15)

Let z′ = (z′1, ..., z
′
p), and z∗(k)′ = (z∗1(k)′, ..., z∗p(k)′). Since ζ ij are independent

across i, with zero mean, conditional on h1, ..., hN , ξ10, ..., ξN0, λ0, we thus have,

denoting ζ i = (ζ ′i1, ..., ζ
′
ip)
′:

E

∥∥∥∥∥ 1

Np

∑
i,j

(
zj(ξi0)′ − z∗j

(
k̂i

)′)
vij

∥∥∥∥∥
2


≤2O

(
1

T

)
E

[
1

Np

∑
i,j

∥∥∥zj(ξi0)−z∗j
(
k̂i

)∥∥∥2
]

+2E

∥∥∥∥∥ 1

Np

∑
i,j

(
zj(ξi0)′−z∗j

(
k̂i

)′)
ζ ij

∥∥∥∥∥
2


= O

(
δ

T

)
+

2

N2p2

∑
i

E
[(
z′i − z∗

(
k̂i

)′)
Ehi,ξi0,λ0 [ζ iζ

′
i]
(
zi − z∗

(
k̂i

))]
= O

(
δ

T

)
+O

(
δp

NT

)
= O(δ2),

where we have used, in turn, the triangle and Cauchy Schwarz inequalities, (S14),

(S15), conditional independence of the ζ i across i, part (v) in Assumption 4, and

(S15) one more time. Note that, by part (v) in Assumption 4, ‖Ehi,ξi0,λ0 [ζ iζ
′
i] ‖ ≤

TrEhi,ξi0,λ0 [ζ iζ
′
i] ≤ pmaxj TrEhi,ξi0,λ0

[
ζ ijζ

′
ij

]
= Op(p

2/T ).

Turning to the second term in (S12), we have:

1

Np

∑
i,j

(
z∗j

(
k̂i

)′
− z̃j

(
k̂i

)′)
vij =

1

Np

∑
i,j

(
z∗j

(
k̂i

)′
− z̃j

(
k̂i

)′)
vj

(
k̂i

)
,

where by (S6) we have: 1
Np

∑
i,j ‖vj(k̂i)‖2 = Op(δ). Moreover:

1

Np

∑
i,j

∥∥∥z∗j (k̂i)− z̃j (k̂i)∥∥∥2

≤ 2

Np

∑
i,j

∥∥∥zj(ξi0)−z∗j
(
k̂i

)∥∥∥2

+
2

Np

∑
i,j

∥∥∥zj(ξi0)−z̃j
(
k̂i

)∥∥∥2

,
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where the second term on the right-hand side is Op(δ) due to (S11), and the first

term is Op(δ) due to (S15). This shows that A3 = Op(δ), hence that A = Op(δ).

Let us now turn to B. Letting: π′ij = vθij
(
vαij
)−1 − Eξi0,λ0

(
vθij
) [

Eξi0,λ0
(
vαij
)]−1

,

we have:

B =
1

Np

∑
i,j

π′ijv
α
ij

(
w̃j(k̂i) + ṽj(k̂i) + α̃j(k̂i)− αji0

)
.

First, we have: 1
Np

∑
i,j π

′
ijv

α
ijw̃j(k̂i) = Op(δ). Next, we have: 1

Np

∑
i,j π

′
ijv

α
ij ṽj(k̂i) =

1
Np

∑
i,j π̃j(k̂i)

′vαij ṽj(k̂i), where π̃j(k) is defined similarly to α̃j(k). To see that this

quantity is Op(δ), note that, by the definition of ṽj(k) and using (S4) and (S6):

1

Np

∑
i,j

∥∥∥ṽj(k̂i)∥∥∥2

=Op

(
1

Np

∑
i,j

∥∥∥vj(k̂i)∥∥∥2
)

= Op(δ).

Moreover, letting τ ij = π′ijv
α
ij, we have:

1

Np

∑
i,j

∥∥∥π̃j(k̂i)∥∥∥2

=Op

(
1

Np

∑
i,j

∥∥∥τ j(k̂i)∥∥∥2
)
.

Now, the τ ij are independent across i, with zero conditional mean given ξi0, λ0:

Eξi0,λ0
(
π′ijv

α
ij

)
= Eξi0,λ0

((
vθij
(
vαij
)−1 − Eξi0,λ0

(
vθij
) [

Eξi0,λ0
(
vαij
)]−1

)
vαij

)
= 0.

Using an argument similar to the one we used to show (S6), and using Assumption

4 (v) in the time-varying case, it thus follows that 1
Np

∑
i,j ‖π̃j(k̂i)‖2 = Op(δ).

Hence, by the Cauchy Schwarz inequality: 1
Np

∑
i,j π

′
ijv

α
ij ṽj(k̂i) = Op(δ).

We lastly bound the third term B3 in B:

1

Np

∑
i,j

π′ijv
α
ij

(
α̃j(k̂i)− αji0

)
=

1

Np

∑
i,j

π′ijv
α
ij

[(
α∗j(k̂i)−α

j
i0

)
+
(
α̃j(k̂i)−α∗j(k̂i)

)]
,

where α̃j(k) and α∗j(k) are given by expressions similar to (S10) and (S13), with

αji0 in place of zj(ξi0) in those formulas. The first term is Op(δ) since, similarly

to (S15): 1
Np

∑
i,j ‖α∗j(k̂i) − α

j
i0‖2 = Op(δ), and the τ ij = π′ijv

α
ij are conditionally
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independent across i with zero mean given ξi0 and λ0 (using a similar argument

to the first term in (S12)). The second term is:

1

Np

∑
i,j

π′ijv
α
ij

(
α̃j(k̂i)− α∗j(k̂i)

)
=

1

Np

∑
i,j

π̃j(k̂i)
′vαij

(
α̃j(k̂i)− α∗j(k̂i)

)
.

We have already shown that: 1
Np

∑
i,j ‖π̃j(k̂i)‖2 = Op(δ). Moreover, using similar

arguments to the ones we used to bound 1
Np

∑
i,j ‖z∗j (k̂i) − z̃j(k̂i)‖2 above, we

have: 1
Np

∑
i,j ‖α̃j(k̂i) − α∗j(k̂i)‖2 = Op(δ). This shows that B3 = Op(δ), hence

that B = Op(δ).

Lemma A3. For given k, j, θ-differentiating:
∑

i 1{k̂i=k}vij(α̂
j(k, θ), θ)=0, and

using (S4), we obtain:

∂α̂j(k, θ)

∂θ′
=

(∑
i

1{k̂i=k}
(
−vαij

(
α̂j(k̂i, θ), θ

)))−1∑
i

1{k̂i=k}vθij
(
α̂j(k̂i, θ), θ

)′
.

(S16)

Let us define, at θ = θ0 (and omitting θ0 and αji0 from the notation):

∂α̃j(k)

∂θ′
=

(∑
i

1{k̂i=k}(−vαij)

)−1∑
i

1{k̂i=k}(vθij)′,

∂α̃j∗(k)

∂θ′
=

(∑
i

1{k̂i=k}(−vαij)

)−1∑
i

1{k̂i=k}(−vαij)
[
Eξi0,λ0(−v

α
ij)
]−1 Eξi0,λ0(v

θ
ij)
′︸ ︷︷ ︸

=
∂αj(ξi0)

∂θ′

.

Using (A1) and (S4), we have: 1
Np

∑
i,j ‖

∂α̂j(k̂i)
∂θ′

− ∂α̃j(k̂i)
∂θ′
‖2 = op (1). Moreover:

∂α̃j(k)

∂θ′
− ∂α̃j∗(k)

∂θ′
=

(∑
i 1{k̂i=k}(−vαij)∑

i 1{k̂i=k}

)−1(∑
i 1{k̂i=k}τ ′ij∑
i 1{k̂i=k}

)
,

where τ ′ij=(vθij)
′−(−vαij)

[
Eξi0,λ0(−v

α
ij)
]−1 Eξi0,λ0(v

θ
ij)
′ are conditionally independent

across i, with zero mean given ξi0 and λ0. Hence, using (S4), and a similar argu-

ment to the one we used to show (S6), we have: 1
Np

∑
i,j ‖

∂α̃j(k̂i)
∂θ′
− ∂α̃j∗(k̂i)

∂θ′
‖2 = op (1).

Lastly, using (S4) we have, as in (S11): 1
Np

∑
i,j ‖

∂α̃j∗(k̂i)
∂θ′
− ∂αj(ξi0)

∂θ′
‖2 = op (1). Com-

bining results shows (A5).
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Lemma A4. In the following we again evaluate all functions at θ0, and omit

θ0 for the notation. In particular, α̂i is a shorthand for α̂i(θ0). We will use the

notation ŵi = −vαi (α̂i). The choice of K = K̂ with γ = o(1) implies that:

1

N

∑
i

‖hi − ĥ(k̂i)‖2 = op

(
1

T

)
. (S17)

We also have: 1
N

∑
i ‖α̂(k̂i)− α̂i‖2 = Op

(
1
T

)
. Let, for all k:

α̃(k) =

(∑
i

1{k̂i=k}ŵi

)−1∑
i

1{k̂i=k}ŵiα̂i. (S18)

Expanding:
∑

i 1{k̂i=k}vi(α̂(k)) = 0 around α̂i, using that vi(α̂i) = 0, we obtain:

α̂(k) = α̃(k)+
1

2

[∑
i

1{k̂i=k}ŵi

]−1∑
i

1{k̂i=k}vααi (ai(k))
(
α̂(k̂i)− α̂i

)⊗2

,

where ai(k) lies between α̂i and α̂(k), and vααi (ai(k)) is a matrix of third derivatives

with (dimαi0)2 columns.

To see that (A6) holds, we rely on the following decomposition:

∂

∂θ

∣∣∣
θ0

∆L(θ) =
1

N

∑
i

∂`i(α̂(k̂i))

∂θ
− 1

N

∑
i

∂`i(α̂i)

∂θ

=
1

N

∑
i

vθi (α̂i)
(
α̂(k̂i)− α̂i

)
+

1

2N

∑
i

vθαi (ai)
(
α̂(k̂i)− α̂i

)⊗2

=
1

N

∑
i

vθi (α̂i)
(
α̃(k̂i)− α̂i

)
+

1

2N

∑
i

vθαi (ai)
(
α̂(k̂i)− α̂i

)⊗2

+
1

2N

∑
i

vθi (α̂i)
(
Ek̂i [ŵi′ ]

)−1 Ek̂i

[
vααi′

(
ai′(k̂i′)

)(
α̂(k̂i′)− α̂i′

)⊗2
]

=
1

N

∑
i

vθi (α̂i)
(
α̃(k̂i)− α̂i

)
︸ ︷︷ ︸

=A1

+
1

2N

∑
i

vθαi (ai)
(
α̃(k̂i)− α̂i

)⊗2

︸ ︷︷ ︸
=A2

+ op

(
1

T

)

+
1

2N

∑
i

vθi (α̂i)
(
Ek̂i [ŵi′ ]

)−1 Ek̂i

[
vααi′

(
ai′(k̂i′)

)(
α̃(k̂i′)− α̂i′

)⊗2
]

︸ ︷︷ ︸
=A3

,
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where ai and ai(k̂i) lie between α̂i and α̂(k̂i), and Ek denotes a mean in group

k̂i = k. Let γ(h) = {Ehi=h (ŵi)}−1Ehi=h (ŵiα̂i), and νi = α̂i − γ(hi). Let ĝi =

vθi (α̂i)(ŵi)
−1, λ(h) = Ehi=h (ĝiŵi) {Ehi=h (ŵi)}−1, and τ i = ĝ′i−λ(hi)

′. Using (S17)

we can show, using that γ is Lipschitz-continuous, that 1
N

∑
i ‖γ(hi) − γ̃(k̂i)‖2 =

op
(

1
T

)
. Moreover, we have: E [ŵiνi |h1, ..., hN ] =Ehi [ŵiα̂i]−Ehi [ŵiα̂i] =0. Similar

arguments to the proof of Lemma A1 give: 1
N

∑
i ‖Ek̂i [ŵi′νi′ ] ‖2 = Op(

K
NT

)=op
(

1
T

)
.

Hence: 1
N

∑
i ‖ν̃(k̂i)‖2 = 1

N

∑
i ‖
(
Ek̂i [ŵi′ ]

)−1 Ek̂i [ŵi′νi′ ] ‖2 = op
(

1
T

)
. Likewise, we

have: 1
N

∑
i ‖λ(hi)− λ̃(k̂i)‖2 = op

(
1
T

)
, and: 1

N

∑
i ‖τ̃(k̂i)‖2 = op

(
1
T

)
.3

Let us now expand the three terms A1, A2, A3 in the above decomposition:

A1 =
1

N

∑
i

ĝiŵi

(
α̃(k̂i)−α̂i

)
=

1

N

∑
i

(
ĝi−g̃(k̂i)

)
ŵi

(
α̃(k̂i)−α̂i

)
= − 1

N

∑
i

(
λ(hi)− λ̃(k̂i) + τ ′i − τ̃(k̂i)

′
)
ŵi

(
γ(hi)− γ̃(k̂i) + νi − ν̃(k̂i)

)
= − 1

N

∑
i

τ ′iŵiνi + op

(
1

T

)
= − 1

N

∑
i

τ ′iEξi0(−v
α
i (αi0))νi + op

(
1

T

)
,

A2 =
1

2N

∑
i

Eξi0
(
vθαi (αi0)

) (
α̃(k̂i)− α̂i

)⊗2

+ op

(
1

T

)
=

1

2N

∑
i

Eξi0
(
vθαi (αi0)

) (
γ̃(k̂i)− γ(hi) + ν̃(k̂i)− νi

)⊗2

+ op

(
1

T

)
=

1

2N

∑
i

Eξi0
(
vθαi (αi0)

)
ν⊗2
i + op

(
1

T

)
,

A3 =
1

2N

∑
i

Eξi0
(
vθi (αi0)

) [
Eξi0(−v

α
i (αi0))

]−1 Eξi0 [vααi (αi0)] ν⊗2
i + op

(
1

T

)
.

Combining, we get:

∂

∂θ

∣∣∣
θ0

∆L(θ) = − 1

N

∑
i

τ ′iEξi0(−v
α
i (αi0))νi + op

(
1

T

)
+

1

2N

∑
i

[
Eξi0

(
vθαi (αi0)

)
+Eξi0

(
vθi (αi0)

) [
Eξi0(−v

α
i (αi0))

]−1 Eξi0 [vααi (αi0)]
]
ν⊗2
i .

3Here γ̃(k), λ̃(k), ν̃(k), and τ̃(k) are defined similarly to α̃(k) in (S18), with γ(hi), λ(hi), νi,
and τ i, respectively, replacing α̂i in that formula.
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Now, ∂α̂i(θ0)
∂θ′

= ĝ′i, and:

∂

∂θ′

∣∣∣
θ0

vecEξi0 [−vαi (α(θ, ξi0), θ)]

= −
(
Eξi0

(
vθαi (αi0)

)
+ Eξi0

(
vθi (αi0)

) [
Eξi0(−v

α
i (αi0))

]−1 Eξi0 [vααi (αi0)]
)′
.

Let ωi = {Ehi (ŵi)}−1ŵi, and ν̃i(θ) = α̂i(θ)− Ehi (ωiα̂i(θ)). Combining the above

with the expression of the bias of the FE score, we obtain:

∂

∂θ

∣∣∣
θ0

∆L(θ)=− ∂

∂θ

∣∣∣
θ0

1

2N

∑
i

ν̃i(θ)
′Eξi0 [−vαi (α(θ, ξi0), θ)] ν̃i(θ)+op

(
1

T

)
. (S19)

Lastly, let α̂i(θ) = Ehi(α̂i(θ)) + νi(θ), and ωi = Ehi(ωi) + ηi = 1 + ηi. We have:

ν̃i(θ) = νi(θ)−Ehi(ηiνi(θ)), from which it follows that: 1
N

∑
i ‖ν̃i(θ0)− νi(θ0)‖2 =

op (1/T ). Likewise: 1
N

∑
i ‖

∂ν̃i(θ0)
∂θ′

− ∂νi(θ0)
∂θ′
‖2 = op (1/T ). Hence, (S19) implies

(A6).

S2 Complements and extensions

S2.1 Average effects

Let mi(αi, θ) = 1
T

∑T
t=1m (Xit, αi, θ) in the time-invariant case, and mi(αi, θ) =

1
T

∑T
t=1 m (Xit, αit, θ) in the time-varying case. Let M̂ = 1

N

∑
imi

(
α̂(k̂i), θ̂

)
be

the GFE estimator of M0 = 1
N

∑
imi (αi0, θ0). We use a common notation as in

the proofs of Theorems 1 and 2, and denote mij(α
j
i , θ) = mi(αi, θ) in the time-

invariant case, and mij(α
j
i , θ) = m (Xit, αit, θ) in the time-varying case.

Assumption S1. (average effects)

(i) mij(α, θ) is twice differentiable in both its arguments, for all i, j.

(ii) maxi,j supα,θ ‖mij(α, θ)‖ = Op(1), and similarly for the first two derivatives

of mij; maxj supξ̃,λ ‖
∂
∂ξ′

∣∣
ξ=ξ̃

Eξi0=ξ,λ0=λ(
∂mij(α

j
i0,θ0)

∂α
)‖ = O(1); and, letting

τmij =
∂mij(α

j
i0,θ0)

∂α′
− Eξi0,λ0 [

∂mij(α
j
i0,θ0)

∂α′
]Eξi0,λ0 [v

α
ij(α

j
i0, θ0)]vαij(α

j
i0, θ0), the func-

tion Ehi=h,ξi0=ξ,λ0=λ(vec τmij ) is twice differentiable with respect to h, with

first and second derivatives that are uniformly bounded in j, ξ, λ, and h,

and ‖Varhi=h,ξi0=ξ,λ0=λ(vec τmij )‖ = O( p
T

), uniformly in j, ξ, λ, and h.
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Let si and H as in Theorem 1 or 2, and let s = 1
N

∑
i si. Define:

smi =
1

p

∑
j

{
Eξi0,λ0

(
∂mij

∂α′

)[
Eξi0,λ0

(
− ∂2`ij
∂α∂α′

)]−1
∂`ij
∂α

+Eξi0,λ0
(
∂mij

∂θ′

)
H−1s

+ Eξi0,λ0
(
∂mij

∂α′

)[
Eξi0,λ0

(
− ∂2`ij
∂α∂α′

)]−1

Eξi0,λ0
(
∂2`ij
∂α∂θ′

)
H−1s

}
.

Corollary S1. Let the conditions of Theorem 1 or 2 hold, and let Assumption S1

hold. Then, as N, T,K tend to infinity such that Kp/(NT ) tends to zero:

M̂ = M0 +
1

N

∑
i

smi +Op

(
1

T

)
+Op

(
Kp

NT

)
+Op

(
K−

2
d

)
+ op

(
1√
NT

)
.

Proof. We have, by a Taylor expansion:

M̂ −M0 =
1

Np

∑
i,j

mij

(
α̂j(k̂i, θ̂), θ̂

)
− 1

Np

∑
i,j

mij

(
αji0, θ0

)
=

1

Np

∑
i,j

∂mij

(
αji0, θ0

)
∂α′

(
α̂j(k̂i, θ̂)−αji0

)
+

1

Np

∑
i,j

∂mij

(
αji0, θ0

)
∂θ′

(
θ̂−θ0

)
+Op (δ) ,

where δ is defined as in the proofs of Theorems 1 and 2.

Using similar arguments to the ones we used to establish Lemma A2, under

Assumption S1 we have (recall that αj(θ0, ξi0) = αji0):

1

Np

∑
i,j

∂mij

(
αji0, θ0

)
∂α′

(
α̂j(k̂i, θ0)− αj(θ0, ξi0)

)
+

1

Np

∑
i,j

Eξi0,λ0

[
∂mij

(
αji0, θ0

)
∂α′

]
Eξi0,λ0

[
vαij(α

j
i0, θ0)

]−1
vij(α

j
i0, θ0) = Op(δ).

Moreover, using (A5) and Assumption S1 we obtain:

1

Np

∑
i,j

∂mij

(
αji0, θ0

)
∂α′

{(
α̂j(k̂i, θ̂)− αj(θ̂, ξi0)

)
−
(
α̂j(k̂i, θ0)− αj(θ0, ξi0)

)}
= op

(
‖θ̂ − θ0‖

)
+Op(δ) = op

(
1√
NT

)
+Op(δ).
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Combining, we obtain:

M̂ −M0 =
1

Np

∑
i,j

∂mij

(
αji0, θ0

)
∂α′

(
α̂j(k̂i, θ̂)− α̂j(k̂i, θ0)

)
+

1

Np

∑
i,j

∂mij

(
αji0, θ0

)
∂α′

(
α̂j(k̂i, θ0)−αji0

)
+

1

Np

∑
i,j

∂mij

(
αji0, θ0

)
∂θ′

(
θ̂−θ0

)
+Op (δ)

=
1

Np

∑
i,j

∂mij

(
αji0, θ0

)
∂α′

(
αj(θ̂, ξi0)− αj(θ0, ξi0)

)
+

1

Np

∑
i,j

Eξi0,λ0

[
∂mij

(
αji0, θ0

)
∂α′

]
Eξi0,λ0

[
−vαij(α

j
i0, θ0)

]−1
vij(α

j
i0, θ0)

+
1

Np

∑
i,j

∂mij

(
αji0, θ0

)
∂θ′

(
θ̂ − θ0

)
+Op (δ) + op

(
1√
NT

)
.

The result comes from expanding αj(θ̂, ξi0) around θ0, and then substituting

θ̂ − θ0 by its influence function.

S2.2 Two-way GFE

We have the following lemma, whose proof is analogous to that of Lemma 1.

Lemma S1. Suppose that there exist random vectors hi = 1
T

∑
t h(Yit, Xit) and

wt = 1
N

∑
iw(Yit, Xit), with fixed dimensions, and Lipschitz-continuous functions

ϕ and φ, such that hi = ϕ(ξi0) + op(1), 1
N

∑
i ‖hi − ϕ(ξi0)‖2 = Op (1/T ), wt =

φ(λt0) + op(1), and 1
T

∑
t ‖wt − φ(λt0)‖2 = Op (1/N) as N, T tend to infinity.

Then we have, as N, T,K tend to infinity: 1
N

∑
i ‖ĥ(k̂i) − ϕ(ξi0)‖2 = Op

(
1
T

)
+

Op (Bξ(K)), and, as N, T, L tend to infinity: 1
T

∑
t ‖ŵ(l̂t) − φ(λt0)‖2 = Op

(
1
N

)
+

Op (Bλ(L)), where Bλ(L) is defined analogously to Bξ(K).

For all θ, ξ, and λ, let α(θ, ξ, λ) = argmaxα Eξi0=ξ, λt0=λ(`it(α, θ)). In addition,

let ξ0 = (ξ′10, ..., ξ
′
N0)′.

Assumption S2. (regularity, two-way)

(i) (Y ′it, X
′
it)
′, i = 1, .., N , t = 1, ..., T , are i.i.d. given ξ0 and λ0, ξi0 are i.i.d.,

and λt0 are i.i.d.; `it(α, θ) is three times differentiable in (θ, α); Θ is compact,

the spaces for ξi0 and λt0 are compact, and θ0 belongs to the interior of Θ.
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(ii) N, T,K, L tend jointly to infinity; supξ,λ,α,θ |Eξi0=ξ,λt0=λ(`it(α, θ))| = O(1),

and similarly for the first three derivatives of `it; the minimum (resp., max-

imum) eigenvalue of (−∂2`it(α,θ)
∂α∂α′

) is bounded away from zero (resp., infinity)

with probability one uniformly in i, t, α, θ, and the third derivatives of `it(α, θ)

are Op(1), uniformly in i, t, α, θ; 1
NT

∑
i,t[`it(αit0, θ0)−Eξi0,λt0(`it(αit0, θ0))]2 =

Op(1), and similarly for the first three derivatives of `it.

(iii) infξ,λ,θ Eξi0=ξ, λt0=λ(−∂2`it(α(θ,ξ,λ),θ)
∂α∂α′

) > 0; E
[

1
NT

∑
i,t `it(α(θ, ξi0, λt0), θ)

]
has

a unique maximum at θ0 on Θ, and its second derivative is −H < 0.

(iv) ∂
∂ξ′

∣∣
ξ̃
Eξi0=ξ,λt0=λ(vec ∂2`it(α,θ0)

∂θ∂α′
)=O(1); ∂

∂λ′

∣∣
λ̃
Eξi0=ξ,λt0=λ(vec ∂2`it(α,θ0)

∂θ∂α′
)=O(1);

∂
∂ξ′

∣∣
ξ̃
Eξi0=ξ,λt0=λ(vec ∂2`it(α,θ0)

∂α∂α′
)=O(1); ∂

∂λ′

∣∣
λ̃
Eξi0=ξ,λt0=λ(vec ∂2`it(α,θ0)

∂α∂α′
)=O(1);

∂
∂ξ′

∣∣
ξ̃
Eξi0=ξ,λt0=λ(

∂`it(α(θ,ξ,λ),θ)
∂α

)=O(1); ∂
∂λ′

∣∣
λ̃
Eξi0=ξ,λt0=λ(

∂`it(α(θ,ξ,λ),θ)
∂α

)=O(1),

uniformly in ξ, ξ̃, λ, λ̃, α, θ.

(v) Ehi=h,ξi0=ξ,wt=w,λt0=λ(
∂`it(α(θ,ξ,λ),θ)

∂α
), Ehi=h,ξi0=ξ,wt=w,λt0=λ(vec ∂

∂θ′

∣∣
θ0

∂`it(α(θ,ξ,λ),θ)
∂α

)

are twice differentiable with respect to h and w, with first and second deriva-

tives that are uniformly bounded in h ∈ H, w ∈ W, ξ, λ, and θ ∈ Θ, where H

and W are the supports of hi and wt; ‖Varhi=h,ξi0=ξ,wt=w,λt0=λ(
∂`it(α(θ,ξ,λ),θ)

∂α
)‖

and ‖Varhi=h,ξi0=ξ,wt=w,λt0=λ(vec ∂
∂θ′

∣∣
θ0

∂`it(α(θ,ξ,λ),θ)
∂α

)‖ are O(1), uniformly in

h, w, ξ, λ, θ.

Theorem S1. Let the conditions in Lemma S1 hold. Suppose that Bξ(K) =

Op(K
− 2
d ) and Bλ(L) = Op(L

− 2
dλ ). Suppose that α and µ are Lipschitz-continuous

in both arguments, and that there exist two Lipschitz-continuous functions ψ and

Ψ such that ξi0 = ψ(ϕ(ξi0)) and λt0 = Ψ(φ(λt0)). Lastly, let Assumption S2 hold.

Then, as N, T,K, L tend to infinity such that KL/(NT ) tends to zero, we have:

θ̂ = θ0+H−1 1

N

∑
i

si+Op

(
1

T
+

1

N
+
KL

NT

)
+Op

(
K−

2
d+L

− 2
dλ

)
+op

(
1√
NT

)
.

Proof. The proof closely follows the steps of that of Theorem 2. Here we simply

highlight the main differences. Let δ = 1
T

+ 1
N

+ KL
NT

+ K−
2
d + L

− 2
dλ . To show
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consistency, a key step is to show, for all θ ∈ Θ:

1

NT

∑
i,t

∥∥∥v(k̂i, l̂t, θ)
∥∥∥2

= Op (δ) , (S20)

where v(k, l, θ) denotes the mean of vit(α(θ, ξi0, λt0), θ) in the intersection of groups

k̂i=k and l̂t=l. Let: ρ(h, ξ, w, λ, θ) = Ehi=h,ξi0=ξ,wt=w,λt0=λ(vit(α(θ, ξ, λ), θ)), and

let, for all i, t, θ: ζ it(θ) = vit(α(θ, ξi0, λt0), θ) − ρ(hi, ξi0, wt, λt0, θ). Proceeding as

in the proof of Lemma A1 we have:

1

NT

∑
i,t

‖ρ(hi, ξi0, wt, λt0, θ)‖2 = Op

(
1

T

)
+Op

(
1

N

)
.

We thus only need to bound:

E

[
1

NT

∑
i,t

‖ζ(k̂i, l̂t, θ)‖2

]
=

1

NT

∑
k,`

Ek`
[
Ehi,ξi0,wt,λt0 (ζ it(θ)

′ζ it(θ))
]
,

where we have used that observations are independent across i and t given ξ0 and

λ0, and Ek` denotes a mean in groups k̂i = k and l̂t = l. To bound this quantity,

we use part (v) in Assumption S2. We thus obtain (S20).

Similarly to the proof of Lemma A2, we then show:

1

NT

∑
i,t

{
vθit

(
α̂(k̂i, l̂t)−αit0

)
+Eξi0,λt0

(
vθit
) [

Eξi0,λt0 (vαit)
]−1

vit

}
=Op (δ) , (S21)

where we omit references to θ0 and αit0. The first key term is:

A3 =
1

NT

∑
i,t

Eξi0,λt0
(
vθit
) [

Eξi0,λt0 (vαit)
]−1

(−vαit)
(

(−vαit)−1vit − ṽ(k̂i, l̂t)
)
,

where ṽ is defined analogously to the proof of Lemma A2. To show that A3 =

Op(δ), we use that the ζ it(θ0) are independent across i and t, with zero mean

conditional on h1, ..., hN , w1, ..., wT , ξ0, and λ0.
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Let π′it = vθit (vαit)
−1 − Eξi0,λt0

(
vθit
) [

Eξi0,λt0 (vαit)
]−1

. The second key term is:

B3 =
1

NT

∑
i,t

π′itv
α
it

(
α̃(k̂i, l̂t)− αit0

)
=

1

NT

∑
i,t

π′itv
α
it

(
α∗(k̂i, l̂t)− αit0

)
+

1

NT

∑
i,t

π′itv
α
it

(
α̃(k̂i, l̂t)− α∗(k̂i, l̂t)

)
,

where α̃(k, l) and α∗(k, l) are defined analogously to the proof of Lemma A2. To

show that B3 = Op(δ), we use that τ it = π′itv
α
it are independent across i and t with

zero mean given ξ0, λ0.

The final step, as in the proof of Lemma A3, is to show that:

1

NT

∑
i,t

∥∥∥∥∥∂α̂(k̂i, l̂t, θ0)

∂θ′
− ∂α(θ0, ξi0, λt0)

∂θ′

∥∥∥∥∥
2

= op (1) . (S22)

The proof of (S22) follows similar arguments to the proof of Lemma A3.

S2.3 GFE based on conditional moments

Assumption S3. (heterogeneity, conditional case)

There exist vectors ξi0 of fixed dimension d, and νi0 of dimension dν, and functions

α and µ Lipschitz-continuous in ξ, such that αi0 = α(ξi0) and µi0 = µ(ξi0, νi0).

Differently from Assumption 1, here µi0 depends on an additional heterogeneity

component νi0, and by Assumption 2 the moment hi is only injective for ξi0.

Assumption S4. (regularity, conditional case)

(i) (Y ′i , X
′
i, ξ
′
i0, ν

′
i0, h

′
i)
′ are i.i.d.; (Y ′it, X

′
it)
′ are stationary for all i; `it(α, θ) is

three times differentiable in both its arguments for all i, t; and Θ is compact,

the space for αi0 is compact, and θ0 belongs to the interior of Θ.

(ii) N, T,K tend jointly to infinity; supξ,ν,α,θ |Eξi0=ξ,νi0=ν(`it(α, θ))| = O(1), and

similarly for the first three derivatives of `it; infξ,ν,α,θ Eξi0=ξ,νi0=ν(−∂2`it(α,θ)
∂α∂α′

)

is positive definite; and maxi supα,θ
∣∣`i(α, θ)− Eξi0,νi0 (`i(α, θ))

∣∣ = op (1),

and similarly for the first three derivatives of `i.
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(iii) infξ,ν,θ Eξi0=ξ,νi0=ν(−∂2`it(α(θ,ξ),θ)
∂α∂α′

) > 0; E[ 1
T

∑T
t=1 `it(α(θ, ξi0), θ)] has a unique

maximum at θ0 on Θ, and its matrix of second derivatives is −Hcond < 0;

and supθ
1
NT

∑
i,t ‖

∂2`it(α(θ,ξi0),θ)
∂θ∂α′

‖2 = Op(1).

(iv) supξ̃,α ‖
∂
∂ξ′

∣∣
ξ=ξ̃

Eξi0=ξ(vec ∂2`it(α,θ0)
∂θ∂α′

)‖; supξ̃,α ‖
∂
∂ξ′

∣∣
ξ=ξ̃

Eξi0=ξ(vec ∂2`it(α,θ0)
∂α∂α′

)‖; and

supξ̃,θ ‖
∂
∂ξ′

∣∣
ξ=ξ̃

Eξi0=ξ(
∂`it(α(θ,ξ̃),θ)

∂α
)‖ are O(1).

(v) Ehi=h,ξi0=ξ(
∂`it(α(θ,ξ),θ)

∂α
) is twice differentiable with respect to h and ξ, with

first and second derivatives that are uniformly bounded in ξ, h ∈ H, and

θ ∈ Θ; and ‖Varhi=h,ξi0=ξ(
∂`i(α(θ,ξ),θ)

∂α
)‖ = O(1), uniformly in ξ, h and θ.

Corollary S2. Let the conditions of Lemmas 1 and 2 hold. Let Assumptions

2, S3, and S4 hold. Let K be given by (6), with γ = O(1). Then, as N, T,K tend

to infinity such that T 1+ d
2 = O(N) we have:

θ̂ = θ0 +Op

(
1

T

)
+Op

(
1√
NT

)
. (S23)

Proof. Let δ = 1
T

+ K
N

+K−
2
d .4 To show consistency, the key step is to show:

1

N

∑
i

∥∥∥v(k̂i, θ)
∥∥∥2

= Op (δ) , ∀θ ∈ Θ. (S24)

Let, for all θ, h, ξ: ρ(h, ξ, θ) = Ehi=h,ξi0=ξ(vi(α(θ, ξ), θ)), and let, for all i, θ: ζ i(θ) =

vi(α(θ, ξi0), θ)− ρ(hi, ξi0, θ). One can show, using similar techniques to the proof

of Lemma A1, that: 1
N

∑
i ‖ζ(k̂i, θ)‖2 = Op(

K
N

), and that this implies (S24).5

We then show: 1
N

∑
i
∂`i(α̂(k̂i,θ0),θ0)

∂θ
= Op(δ), which will follow from:

1

N

∑
i

vθi

(
α̂(k̂i)− αi0

)
= Op (δ) , (S25)

where from now on we omit references to θ0 and αi0. We have:

1

N

∑
i

vθi

(
α̂(k̂i)− αi0

)
=

1

N

∑
i

vθi

(
α̃(k̂i)− αi0 + ṽ(k̂i)

)
+Op (δ) ,

4Note that if K = K̂ is given by (6) with γ=O(1), then K=O(T
d
2 ) and δ=O( 1

T +T
d
2

N ), so if

T 1+ d
2 = O(N) then δ=O( 1

T ).
5Note that, in the case of Theorem 1 (i.e., in the absence of additional heterogeneity νi0),

the left-hand side in (S24) is Op(
1
T ).
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where α̃(k) and ṽ(k) are as in the proof of Lemma A2; that is, denoting wi = (−vαi ),

we have α̃(k) = w(k)−1wα(k) and ṽ(k) = w(k)−1v(k).

Let γv(hi) = Ehi(vi), ζ
v
i = vi − γv(hi), γw(hi) = Ehi(wi), ζ

w
i = wi − γw(hi),

γvθ(hi) = Ehi(vθi ), and ζv
θ

i = vθi − γvθ(hi). First, we have:

1

N

∑
i

vθi ṽ(k̂i) =
1

N

∑
i

vθiw(k̂i)
−1v(k̂i) =

1

N

∑
i

vθ(k̂i)w(k̂i)
−1vi

=
1

N

∑
i

(γvθ(k̂i) + ζ
vθ

(k̂i))(γw(k̂i) + ζ
w

(k̂i))
−1vi=

1

N

∑
i

γvθ(k̂i)γw(k̂i)
−1vi +Op(δ),

where for example γw(k) is the mean of γw(hi) in group k̂i = k, and we have used

that 1
N

∑
i ‖ζ

vθ

(k̂i)‖2 = Op(K/N), 1
N

∑
i ‖ζ

w
(k̂i)‖2 = Op(K/N), and 1

N

∑
i ‖vi‖2 =

Op(1/T ). Moreover:

1

N

∑
i

γvθ(k̂i)γw(k̂i)
−1vi =

1

N

∑
i

γvθ(k̂i)γw(k̂i)
−1γv(hi) +Op(δ),

where we have used that 1
N

∑
i ‖ζ

v
(k̂i)‖2 = Op(K/(NT )). Lastly, we have:

1

N

∑
i

γvθ(k̂i)γw(k̂i)
−1γv(hi) =

1

N

∑
i

γvθ(hi)γw(hi)
−1γv(hi)

+
1

N

∑
i

[
γvθ(k̂i)γw(k̂i)

−1 − γvθ(hi)γw(hi)
−1
]
γv(hi),

where the first term isOp(δ) since it is a mean of i.i.d. terms with meanO(1/T ) and

variance O(1/T ), and the second term is Op(δ) since 1
N

∑
i ‖hi − h(k̂i)‖2 = Op(δ)

and the γ functions are Lipschitz-continuous.

Second, let vθiw
−1
i = η(hi, ξi0) + ei, where Ehi=h,ξi0=ξ(eiwi) = 0. We have:

1

N

∑
i

vθi

(
α̃(k̂i)−αi0

)
=

1

N

∑
i

η(hi, ξi0)wi

(
α̃(k̂i)−αi0

)
+

1

N

∑
i

eiwi

(
α̃(k̂i)−αi0

)
,

where the first term is Op(δ) since 1
N

∑
i ‖hi − h(k̂i)‖2 = Op(δ),

1
N

∑
i ‖ξi0 −

ξ(k̂i)‖2 = Op(δ),
1
N

∑
i ‖α̃(k̂i) − αi0‖2 = Op(δ), η is Lipschitz-continuous, and
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wi is uniformly bounded (as in the proof of Lemma A2), and the second term is:

1

N

∑
i

eiwi

(
α̃(k̂i)− αi0

)
=

1

N

∑
i

eiwi

(
α̃(k̂i)−α(k̂i)

)
+

1

N

∑
i

eiwi

(
α(k̂i)−αi0

)
=

1

N

∑
i

ew(k̂i)
(
α̃(k̂i)− α(k̂i)

)
+Op(δ) = Op(δ),

where we have used that the (eiwi)’s have zero mean given h1, ..., hN , ξ10, ..., ξN0

with bounded conditional variance, and 1
N

∑
i ‖ew(k̂i)‖2 = Op(K/N) = Op(δ).

Finally, to show: 1
N

∑
i

∂2

∂θ∂θ′

∣∣
θ0

(`i(α̂(k̂i, θ), θ)− `i(α(θ, ξi0), θ)) = op(1), we use

similar arguments to the proof of Lemma A3.6

Example: a linear homoskedastic model. Consider the model Yit = Xitθ0 +

αi0 + Uit, where Xit are scalar and Uit are i.i.d. with mean zero and variance

σ2 given Xi1, ..., XiT , αi0. Let θ̂ be the GFE estimator based on a moment hi =

ϕ(αi0) + εi that satisfies Assumptions 1 and 2 for ξi0 = αi0; that is, hi is only

informative about αi0, but not about the heterogeneity in Xit. Let ζXi = X i −

Ehi(X i), ζ
α
i = αi0 − Ehi(αi0), and ζUi = U i − Ehi(U i). We assume that K is large

enough for the approximation error to be of smaller order, and that K/N tends

to zero, as in Corollary 2. Under appropriate conditions in the regression model,

using similar arguments to the proof of Corollary S2 (though with no need for

any restriction on the relative rates of N and T ), one can show that θ̂ admits the

following expansion:

θ̂=θ0+
1
N

∑
i ζ

X
i (ζαi + ζUi ) + 1

NT

∑
i,t(Xit −X i)(Uit − U i)

E[(Xit −X i)2] + Var(ζXi )
+op

(
1

T

)
+op

(
1√
NT

)
.

(S26)

Notice two differences between (S26) and the expansion of the FE estimator: the

presence of Var(ζXi ) in the denominator, and the presence of 1
N

∑
i ζ

X
i (ζαi + ζUi )

in the numerator. In addition, notice that (S26) simplifies to the expression in

Corollary 2 in the absence of additional heterogeneity νi0.

6Although the arguments are as in the proof of Lemma A3, the target log-likelihood is different
since here α(θ, ξi0) only depends on ξi0, not on (ξ′i0, ν

′
i0)′. In particular, the matrix Hcond in

Assumption S4 differs from the matrix H in Assumption 3; see (S26) for an example.
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S3 Simulations

Model of wages and participation (see (2)). We model the initial condition

as: Yi0 = 1 {u(αi0) ≥ c(1; θ0) + Ui0}, with Ui0 standard normal, independent of

αi0. We set c(0; θ0) = 0 and c(1; θ0) = −1. We set αi0 and Vit to be independent

standard normals. In the simulations based on models (2) and (3) we weight the

moments by the share of between-i variance to total variance.7 To compute the

variance V̂h to set the number of groups in this dynamic model, we use a Newey-

West expression with one lag. Lastly, for kmeans computation we use Lloyd’s

algorithm with 100 random starting values. Table S1 shows additional simulation

results for this model.

Probit model with time-varying heterogeneity (see (3)). The Uit’s are

standard normal independent of the Xit’s and the αit0’s. The data generating

process (DGP) for the scalar covariate is: Xit = µit0 + Vit, where Vit are i.i.d.

standard normal independent of the Uit’s, αit0’s, and µit0’s, and µit0 = αit0. We

set θ0 = 1, and set ξi0 and λt0 to be i.i.d. Gamma(1,1) draws, independent of

each other. Table S2 shows additional simulation results for this model, includ-

ing for the two-way GFE estimator based on both the cross-sectional moments

( 1
N

∑
i Yit,

1
N

∑
iXit)

′, and the individual-specific moments (Y i, X i)
′.

Conditional moments: an example. Consider the following probit model:

Yit = 1{X ′itθ0+αi0+Uit ≥ 0}, where the Uit are i.i.d. standard normal independent

of the Xit’s and αi0, and θ0 is a vector of ones. The DGP for the k-th covariate

is: Xitk = 1{µi0k +Vitk > 0}, where Vitk are i.i.d. standard normal independent of

the Uit’s, αi0, and the µi0k’s, and αi0 and the µi0k’s follow independent standard

normals. We vary the number of covariates between 1 and 3, so the total dimension

of heterogeneity varies between 2 and 4. In this model, we expect the bias of FE

to be moderate given the time horizon we consider (T = 20), since αi0 is scalar

7Specifically, we demean and rescale hi so that all its components hi` have zero mean and unit

variance, and multiply each component hi` by: max

(∑
i h

2
i`− 1

T2

∑
i,t(hit`−hi`)2∑

i h
2
i`

, 0

)
. Using equal

weights instead has small effects in these simulations, however we observed that this particular
weighting can improve performance when some moments are substantially less informative about
the heterogeneity than others.
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and FE is a conditional approach. The question we ask here is how much the

use of conditional moments can help reduce the bias of GFE due to the presence

of additional heterogeneity in the covariates and the increased dimensionality of

heterogeneity (see Subsection 4.2).

Consider first using hi = (Y i, X
′
i)
′ as moments. In Table S3 we show the biases,

standard deviations, and root mean squared errors of FE and GFE among 1000

simulations, for N=1000 and T=20. In the top panel we report GFE estimates as

a function of the number of groups K. We see that, while the bias of GFE remains

moderate with one covariate, the bias increases substantially with the dimension

of heterogeneity, in agreement with our theory. By comparison, the bias of FE in

the bottom panel is indeed quite small, and it only increases moderately with the

number of covariates.

The situation is rather different when using conditional moments in GFE.

In the middle panel in Table S3 we show simulation results for GFE based on

covariates-specific conditional means Y i(x) =
∑T

t=1 1{Xit = x}Yit/
∑T

t=1 1{Xit =

x}. Importantly, in large samples these moments are only informative about αi0,

not µi0. We see that the bias of GFE with conditional moments increases only

moderately with the number of covariates, and that FE and GFE with conditional

moments have comparable — and quite small — biases.

Regarding implementation, note that, for a given i, all moments Y i(x) may

not be available since i’s covariates may never take the value x in the sample. In

Table S3, whenever Y i(x) is not available, we set the moment to an imputed value,

the overall conditional mean Y (x) =
∑

i,t 1{Xit = x}Yit/
∑

i,t 1{Xit = x}. The

imputation does not affect the theory, provided the event that any of the Y i(x)’s

is not available tends to zero with probability approaching one in large samples.8

Moreover, we have obtained similar results using an alternative conditional first

step implementation that does not rely on imputations.9

8To provide intuition in a simple case, suppose that Xit are binary, i.i.d. over time given µi0,
with Pr(Xit = 1 |µi0 = µ) ∈ (ε, 1− ε) for all µ, for some ε > 0. Then Pr(∃i : Xi1 = ... = XiT =
0) ≤ N(1− ε)T , which tends to zero whenever (lnN)/T → 0.

9This implementation is as follows. Let Ii(x) be the indicator that there exists a t such that
Xit = x, and let x1, ..., xM denote the points of support of Xit. In the first step, we use a

Lloyd’s-like algorithm to minimize the function
∑N
i=1

∑M
m=1 Ii(xm)

(
Y i(xm)− g(xm, ki)

)2
, with
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Table S1: Model (2) of wages and participation

T Bias std RMSE se/std Bias std RMSE se/std

GFE, η = 1 FE, η = 1

5 -0.570 0.058 0.573 1.082 -0.835 0.064 0.837 1.066
10 -0.207 0.040 0.211 1.003 -0.418 0.040 0.420 1.041
20 -0.088 0.027 0.092 0.993 -0.209 0.026 0.211 1.064
30 -0.055 0.023 0.060 0.960 -0.140 0.023 0.142 0.991
40 -0.040 0.019 0.044 1.000 -0.105 0.019 0.106 1.034
50 -0.031 0.017 0.036 0.982 -0.084 0.017 0.086 1.022

GFE, η = 2 FE, η = 2

5 -0.519 0.063 0.523 1.052 -0.876 0.068 0.879 1.063
10 -0.163 0.043 0.169 0.985 -0.442 0.041 0.444 1.070
20 -0.049 0.031 0.058 0.929 -0.225 0.028 0.227 1.042
30 -0.032 0.024 0.040 0.964 -0.153 0.022 0.154 1.068
40 -0.019 0.020 0.028 0.981 -0.113 0.019 0.115 1.045
50 -0.015 0.019 0.024 0.944 -0.091 0.018 0.093 1.000

Notes: 1000 simulations, N = 1000. “RMSE” is root mean squared error, “se” is the average

of standard error estimates across simulations, “std” is the standard deviation of the estimator

across simulations. η is the risk aversion parameter.

respect to k1, ..., kN and g(x1, 1), ..., g(xM ,K).
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Table S2: Probit model (3) with time-varying heterogeneity
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Notes: See notes to Table S1. IFE is interacted fixed-effects with one factor. σ is the substitution

parameter.
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Table S3: Probit model with binary covariates

K Bias std RMSE Bias std RMSE Bias std RMSE

GFE, 1 covariate GFE, 2 covariates GFE, 3 covariates

5 -0.189 0.029 0.191 -0.293 0.031 0.295 -0.362 0.042 0.365
10 -0.083 0.027 0.088 -0.205 0.032 0.207 -0.275 0.035 0.278
20 -0.017 0.029 0.033 -0.118 0.030 0.122 -0.206 0.033 0.209
30 0.006 0.029 0.030 -0.081 0.030 0.086 -0.166 0.032 0.169
40 0.018 0.029 0.035 -0.056 0.030 0.064 -0.136 0.033 0.140
50 0.026 0.030 0.039 -0.040 0.031 0.051 -0.116 0.033 0.120

Cond. GFE, 1 covariate Cond. GFE, 2 covariates Cond. GFE, 3 covariates

5 -0.060 0.035 0.069 -0.085 0.037 0.093 -0.111 0.039 0.117
10 -0.045 0.033 0.056 -0.073 0.043 0.085 -0.100 0.044 0.109
20 -0.015 0.034 0.038 -0.046 0.037 0.059 -0.075 0.045 0.087
30 0.008 0.036 0.036 -0.031 0.036 0.047 -0.061 0.043 0.075
40 0.025 0.035 0.043 -0.020 0.037 0.041 -0.050 0.042 0.065
50 0.034 0.035 0.049 -0.012 0.036 0.038 -0.040 0.041 0.057

FE, 1 covariate FE, 2 covariates FE, 3 covariates

- 0.062 0.031 0.069 0.074 0.034 0.081 0.088 0.039 0.097

Notes: 1000 simulations, N = 1000, T = 20. In the top panel we show GFE estimates based

on unconditional moments for different K values, in the middle panel we show GFE estimates

based on conditional moments for different K values, in the bottom row we show FE estimates.
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